‘This equation represents the number of photons per ‘unit volume lying in the frequemy range
vand v +dv.

The eriergy density of radiation of frequéncies between v and v +dv' can how be found by
multiplying equation (8) with the energy of the photon hv. Therefore, if u (v)dv. represents the
energy density of radiation within the specified frequency range, then we get the energy
distribution law '

: u(v)dv={—L“' hv} 8’“’3d"[ uk ]
., 1

ol g

A ' N
3 AT L : : +(9)

& e - =1

This is well known Planck’s law of radiation in ternts of frequency.

Equation (9) in terms of wave-length A becomes

A o u(v)dv=

(smcev=£anddv=-ﬂ2]
A A
8nh (-cd\/)
u(A)dh="—" 33 im——l
negative sign occurs because whenv mcreasa, A decreases
i.e. terms of modulus ludr | = 8n151c : 7 /f:; (10)
A -1

’I‘hxs is well known Planck’s law of radiation in terms of wavelength.

Hence the Bose-Einstein statistics while confirming the validity of Planck's radiation law, has
the merit of using only phatons and no other-hypothefical resonators in the deduction’of the law
governing the black-body radjatisfFe®

Q: what is Bose- Einstein condensation? Derive the expression for temperature
at which it is achieved.

Ans:
From Equation (25) the approximate value of A is
- I
A=¢ %=t T
TV ik

_If the-density of particles is increased and/or the temperature is decreased, the value of A
increases (or a=—p/kT detreases). Then the behaviour of the perfect gas departs farther and
farther from that of the classical perfect gas due to the fact that the velocities of the particles are
subject to quantum statistics and not to classical statistics. The gas under this condition is said to
be degenerate and - the parameter A is called the degeneracy pararmeter.
 As the expression for A contains three variables, viz., m the mass of the particle, n/V the
particle density, i.e, the number of particles per unit volume and T .the absolute temperature of

LA N
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the gas. obviously the critérion of degeneracy will be based on the magnitude of (rff‘.&‘a;}f Hence,
e - o

the degree of degeneracy will be large when temperature is low, particle density is large and the mass of each

boson-is small. On account of the above three factors, the.gas can bacome degenerate in three

different ways: R ' ' , )
For low energy values the maximum admissible value-of A is ‘1 [refer eqn. (5)] and:
.consequently o can never be negative, Thus for low energy values the limiting case of highest
degeneracy in Bose-Einstein gas reaches when A =1, o= 0. Then the maximum value of f; (&) will

be given by

L 1 1 .
[ @hac=i @) =1+ 7+ 75 + .. = 2612
So the maximum value of particle density n/'V will be given by

_ 3712
%] CIT) 5 612).
w

" Since qu.l:gﬁcm (32) corresponds to the limiting case of the Bose-Einstien degeneration, on
solution of equation (15) can exist for - . s N .
nLEUT) g1 33

. A K _ L
because this would involve A >1.

The fact that no value of 1n/V can be greater than that given by equation (32) can be
- alternatively expressed in terms of the critical temperature Ty. defined as

372
#n (2 mmkTp) : :
v 3 L2612, -..(34a)
' 3 /3
. . H 1 mnoye
_ . _1 n .(34b
he o=k | 7612 V : (346)

| us the critical temperature Ty is the lowest temperature for which a solution of equation
(15) is possible, i.e. there is one sofution of equation (15) for T.< Tp . Ty is therefore the temperaftre

——————

at which the dégen_er;.cy of energy levels starts. If we plot a graph between the energy E and the"

temperature T of the gas a curve of the type shown in Fig.
8.777s obtained: Below the critical temperature Tg-full line

shows the relation between E and T of a degenerate gas,
whilé" the dotted line through the origin that of a
non-dégenerate gas. Eq is termed 3s zero point energy which
will be undersood in “the applicati i-Dirac
stafistics. The critical temperature Ty is 5K for helium gas.
Now, the question drises why there is no solution of
equation (15) for T <Tp. The reason js that while arriving
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at Bose-Einstein d{srributiun, because of the. closeness of
energy levels, we have assumed the continuous
disttibution in place of discrete distribution, and hence
have replaa:d the summation b}r mtegrahon, while at low
teinperatures, the ntimber of parhcles begm to crowd into lower energy levels and a large number
of particles may occupy the ground state gy = 0. This means that at low temperatures we must be
careful in replacing the summation into integration. -

Now, fmm equation (12) the number of particles lying between energy’ range eand e+deis
given by :

-l
D :(GE ERP'FY'

o T . O
(Fig. 8,2)

£“+ Ef.'c'f'

3 =4V,
It may be now noted that forrgmurui _sfai.fe e=£p=0, g(¢) =0, while actually it should be unity
g(0}=1 as there is one state at € =0 Therefore, the above distribution [eqn. (35)] gives incorrect
. result for ground state,while this state is very important at low temperature. We furlher note at
€ #0, g(€) # 0and therefore the above distfibution holds good.
" Consequently, the distribution (35) can still be applied for all states except ground state wl‘uch
should-be treated separately. 2 & ]
For a single state, we have _
;= “"“g?"l
For ground state & =€y =0 and g, =1. Therefore, the number of parhdes it the gnund state 15

given by,

H-—#H‘u:
! e -1
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Therefore, the total number n of particles for the degenerate case ma}' be expressed as
J 4m‘ﬂ V (Emﬂ} g

I1'JIﬂ+J‘H(E de = ng +

n+afkT i .
o s ...(38)
2
aze | I'T Y J +r..f‘kT -1 )
=h—‘;{zmm:f‘”,{1-:a) [using 26 . . .
2f1 (o) | ‘
o i ...(40
H[Tnf/ f]fﬂ) :

[using (34s) as f(0) = 2-612]
Asfi{a)<fy I‘J} therefore n’ given by equation (40} acquires its maximum value when a=0.
-T'hus the maximum number of partmies (n") occupping states above the ground state is given by

T v/ .
n [ﬁ]‘/ (for T < Tp). ...(41)

Therefore the rest ofpa:ncles, given by
p [
n=n—n'=n [T’J/] o (orT<Ty )

L

must condense into the ground state. .~
From’ equation (42), it is obvious that whm the temperah.lre of a
Bose-Einstein gas is hwm’wﬂw_mmwre To the

number of particles in the ground state rapidly incréases. This rapid
increase in the population uf the ground state below the Critical temperature
Tg. for a Bose-Einstein gas is called the Bose-Einstein condesation. It is
obvious from equation (345) that the critical temperature Ty at which
the Bose-Einstein condensation starts depends upon the partmie
density n/V of the gas. —

Equation (42) is plutted in th 8.3 which represents the fractionof
particles condensed in the ground state for T< Ty At the ground state
e=0, the partiles of a Bose-Einstein degenerate gas condensed in: the ground
state donot contribute to the energy. . :
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(Fig. 8.3)

Q: Draw and explain phase equilibrium diagram of helium.
Ans:
The phase equilibria of helium are represented
- diagrammatically in fig. 1011 in  which all
portions are not on the same scale. A study of the
plase diagram shows that it is entirely different
from that of all other substances, The fusion curve
" (or the solid-liquid phase line)and the saturated
vapour pressure curve (or the liquid-vapour phase
line) do not meet-in a point, as in the case of other
substances and if we pursue the vapour pressure
curve down to lower temperature it is found that
the vapour and the liquid continue in equilibrium
“down to the absolute zero. Thus the three phases
solid, liquid and vapour are never found to coexist

or in other words helium fias 1o triple point in the conventional sense of terms. This is certainly an

extraordinary thing and shows that helium is a unique liquid. .
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- The curve FEK (Fig. 10.11) shows the influence of pressure-on the melting point. It proceeds

upwards to the right, takes a sharp bend at E and flattens out at low temperatures meeting the
pressure axis at 25 atmospheres indicating that helium will not selidify even at 0 K if it is not subjected
fo pressures exceeding 25 atmotpheres. The S.V.P. curve, on the other hand, appears to proceed
normally to the left towards the origin (p =0, T=0) but to the right it terminates at-critical point C
corresponding to a temperature of 52 K and a pressure of 2:26 atmospheres. The point A (219K)
is known as the A point of liquid helium under its own pressure. :

For helium in the liquid phase, tnere is a phase fransition called the A transition, which divides
the liquid state into two phases, helium I and helium IL The fusion curve and 5.V.P. curve are
joined by the A-line running between the points E (T=175K,p=230atmos) and
A(T=(219 K and p = 0.05 atoms) with helium I to its right and helium II to its left. Thus helium is
present in the liquid form on either side of the A-line. Kamerlingh Onnes, in the course of his
investigations found that liquid helium shows an extremely interesting behawiour if it is cooled
below its boiling point (4-2 K) to about 218 K. He found that the density passes through an abrupt
‘maximum at 2-19 K decreasing slightly thereafter as shown in fig. 10.12. The density first rises
with the fall of temperature from 42 K upto 2'19 K reaches.a maximum value of 0-1462 at 2:19 K
and then decreases with the decrease of temperature. Thus below 2-19 K, the liquid helium which
was contracting when cooled now begins to expand. -

The specific heat of liquid helium at constant volume C, has been plotted in fig. 10.13 . The
specific heat increases, upto 2-19 K, and at this temperature there is a sudden and abnormal
increase in its value. Beyond 2-19 K the specific heat first decreases and then increases. The
dielectric constant also Behaves in a similar manner. The specific heat temperature graph at 2-19 K
looks like the Greek letter lambda (A) and hence this temperature (2-19 K) at which specific heat
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changes abruptly is called the A-point. There is a fundamentat differeneebetween the-natures of the
liquid above and below the A~ point (2-19 K). quuld helium above 2:19 K which behaves in a
normal way is called liquid helium I and that exiting below this temperature is called the liquid
helium I because of its- abnormal properties. No heat is evolved-or absorbed dunn& the transition
from one form of hielium to another. In other words no [atenf heat is inyolved in, the transmon
He [—> He Il which suggests that: - N -

(a)the entropy is continuous across the curvei.e., the entropy of He H is practially the same as
that of the He I'and

'(b) thereé is no change of densnty durmg transitions, i, the densuy of both types of hqurd is’
aboit the same.

While the viscosity of liquids i increases with decrease in temperature, that of 11qu1d helium [
decreases, in this respect Hel resembles a gas. The viscosity of He II is almost zero and it can flow
rapidly through a narrow capallaries. Liquid helium is a normal liquid while helium II presents
a very anomalous behaviour in the sense that its thermal couduetivity is abnormally high, its
internal friction is practically zero and that when it is forced through a capillary, the emerging
liquid cools while that which remains behind warmis up. The densites of the twe liquids are about
the same, somewhere in the neighbourhood of 01462 K wh1ch is far less than that of the lightest.
of other liquids like ether and gasoline. -

Q: write down some properties of helium Il. Explain fountain effect.
Ans:

In many of its properties, the behaviour of llquld helium II is quite, unlike that of any other
substance. It behaves strongly and shows some very umque propertles Some of the more
interesting ones are given below:

(1) Extreme fluidity. One of the most significant. properties of liquid helium H is that its
viscosity is abnormally low even less than that of hydrogen gas and that its rate of flow through
caplllarles is independent of the pressure difference across them. Accordmg to Poiseuille’s law the
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rate of flow of Tiquid through a capillary tube or an annular space is inversely proprtional to the
viscosity. If the rate of flow of liquid helium through a fine annulus is measured as a function of
temperature, the curve poltted in Fig. 10.14 (a) is obtained. At the A-point the rate of flow
increases abruptly and below it the flow is found to be extra-ordinary large thus proving the
experimental evidence of a very low viscosity of liquid helium II. The values of the viscosity
coefficient are plotted in Fig 10.14 (b) as obtained by the oscillating disc method It may bé noted
that there is a sharp discontinuity at the A~point and in course of the curve on the two sides of itis
different, The viscosity falls by a factor of about ten on passing through the A-point. In fact
‘Kapitza found that : : ’

1) for liquid He II _ 104-3
1 for liquid He I
T 30} T 30
g : .'fg _
& 20} £ 20
S Z
< 10F | APOINT 10
o . .
| 219 1 . ., , i .
15 25 35 45 .15 25 35 45
TEMPERATURE (K) =+ TEMPERATURE (K) —»

% (Fig.10.13) A [Elp. 10.18)

Thus liql-.tiCi Hei'lf has' practically zero viscosity and can flow rapidly, almost without

. Tesistance, through narrow tubes. that is why' the liquid Hellis called a superfluid, a new
frictionless state of matter. The properties associated with it have been characterised as

superfluidity. - = ; _ '

(ii) High heat conductivity. Heat conductivity of liquid helium I is quite normal of the order

of 10, which in turn is of the same order as for gases at ordinary temperatures. But He I is found
to have an extra ordinary high coefficient of thermal conductivity, The heat transported per unit
temperature gradient is several 10 times as great as that in copper at room: temperature, He I is

said to'be about 800" times more tonductmg' than copper and about 135 x 10° times-more than

liquid He I, the absolute value being 820 cals cm™ ! deg "second ™. It is also found that the heat
flow is not proportional to the temperature gradient. '

TMhawiead a3 Vs »
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(iii) For_rhation of films over solid surfaces. Liquid helium II
the form of a highly mobile film generally kriown as

Rpﬂi:}-_Sirnon) film which is of the order of several hundred atoms thick. The properties of the film
hwéere investigated by Daunt & Mendelssohn who observed the following remarkable behaviour of
lium. '

can creep along solid surfaces in
the Rollin (sometimes also called

if a tube containing helium JI be placed in a helium I bath, it is observed that :

(a) If-the liquid level inside the tube is lower mfn thlft
outside, the liquid helium from outside starts creeping intd the
tube along its surface in the direction of arrows shown in :;f:l
10.15 (a) The process conti;ues till the levels, inside

utside the tube, are equalized. A, ‘
uufs Eg)elf the tube beg raised up so that the le:‘tft.’.]. of h_e!n_:lzin
inside it is higher than that outside it, the liquid from mme
the ‘tube starts creeping out of it aleng its surface in the
direction of arrow [Fig. 10.15 {b)] till the two levels again
e same. A . o

bec{zg;iﬁlme tube is lifted entirely out of the He bath, the 1“3,111;:
inside the tube now creeps out along the surface of %I}e ¢ %
collects at its bottom in the form of drops and:,ffdls,lmts t et
liquid below till the whole liquid inside the tube is drained oy |
[Fig. 10.15 (c)] and the tube is empty.

(Fig. 10.15)
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" "7 All these experiments indicate that the liquid helium II seeks the lowest level, but the rate of
transfer of the liquid is independent of the difference in level and the nature of the surface. It;
however, depends upon the temperature and the perimeter of the.surface over which it has to
pass. . , ' ' _ : :

Thus liquid, He II seems to defy grativity by creeping out of the containing vessel by coating
the walls with a thin film of the liquid. - e

BILG FYGRALD VY 4SS0 EAAIRLLE SLLSAL Wi A8 sandsaanas

~ (iv) The ‘Fountain’ and ‘Mechano-caloric’ Effect. Another set of peculiar properties of liquid
He I is manifested in the ‘Fountain’ and ‘Mechano-caloric’ effects. The * fountain effect, which is
illustrated in-Fig- 10.16 shows that heat locally supplied to the system produces a pressure
difference. The phenomenon was discovered by Allen and Jones, in 1938 but the apparatus shown
in Fig. 10.16 is one due to Allen and Misener. In the apparatus, He II is taken in a tube-AB-open at
both the ends and kept inside a Dewar flask also containing liquid helium II. The upper part A of
the tube is in the form of a capillary and kept projecting qut of the liquid bath while the lower part
B with a small opening ‘O at thé bottom is packed with fine erery powder. The interspaces between
the powder particles provide fine capillaries for the liquid He I to flow into the tube. When heat
radiations from an ordinary torch are allowed to fall on the powder, liquid He is found to spurt

RN, T
B L R R e
e “‘:&“r‘:ﬂf" T | :
- — L -t
, = :ﬁ.‘mmm,j;..: i . RESISTANCE
A o o Y - THERMOMETER
_— FOUNTAIN
|  oFuauip
Had == L L. He
iauio
HELIUM Nl LiIG.He ; ‘\
_ BATH .\ DEWAR
| __EMERY . \ FLASK -
LIGHT POWDER % _.e][ O ___ -
FROM p Ryl By M X
A e e -
TORCH EEEEiiiirrro— =
(Fig. 10.16) (Fig. 10.17)

out of the capillary tube in the form of a fountain which has been observed as high as 30 cm. This
. is a consequence of absorption of energy by emery powder.  -. . .= . L o
The mechano-caloric effect is illusfrated in Fig.10.17 which is opposite to the fountain effect
and shows that the flow of.liquid gives rise to a temperature difference. A Dewar flask is filled
partly with the liquid helium I.and provided with'a small hole O at the bottom which is plugged
by fine powder. A resistance thermometer is introduced in the Dewar flask and then its top is
closed. If now the flask is above the level of the liquid He bath, the liquid from the flask drains out
-through: the power and its temperature is found to increase by about 0-1°C If on the other hand,
the Dewar flask is dipped into the bath and the liquid helium is allowed to flow into it through
the opening O via the powder, the temperature inside the flask is observed to decrease.
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Chapter 5: Fermi Dirac statistics

Q: derive an expression for Fermi-Dirac distribution law.
Ans:
In accordance with the postualate of equal a pnon probablht} of states, the probability Q of
the system for occurring with the specxﬁ'ed distribution is proporuonal to thé total number of

eigen states i.e.,
|

- 8i-
Q=f—°
(g —m) !

The Fermi-Dirac dbtnbutton law can now ‘be ‘obtained by dete:mmma the most probable
distribution.

Taking log of ec.luatlon (3), we get

logQ=log Il —"_8—-—' X constant |. .
v 1t (gi=m)! k4

= Z flog g;! ~ log n; ! - log (g; =) }] + constant. .. {4)

X constant. . | . .(3)

.

As n; and giare large numbers, therefore using Stirling approximation, eqn. {4) reduces to
log Q= Z (gi - log gi —log nj + n; - (g; —n;) log (g, m) +(gi— n,)] + constant -

= E (07 - i) log (8: — 1) + g; log g¢=n; logn;] + constant. o)
Remembermg that g; is not sub;ect to variation and #; varies continuously, the dlfferenhatlon
of above equatnon gives

-8 (log ﬂ}"ﬁﬂﬂs (Hi“"f}-lﬂz ngl &n;
=_1-,| ggt "o -(6)

For anost probable distribution Q= ﬂm,, so & (log ﬂm‘] =0. Thus the conditions of most
pmbab&' distribution gives

E{]og }ﬁﬁ,:ﬂ ) ’ A7)
The twa subsidiary conditions are - ,
(i) The total number of particles of the system is constant
e, | A . -&::E&:F‘ﬂ - -.{8)
(i) Total energy of the system is constant '
ie. E=1 n;g; = constant
; : o=
ie. ' SE=Zg bn;=0. o wl(9)
i P
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Now to apply the Lagrangian method of undetermied multipliers, we multiply equation (8)
by o and equation (9) by fand adding the resulting expressions to equation (7); so that we get

il Law.—0 — 10y
?{lﬂg-[ff_'"f]“‘u*-ﬂﬁ}:ﬁﬁl"'? | (10)

As the variation &n; are independent of each other, we get

log ——+ o+ Be; =0

-8i="i
fy N w04 j]
or - _=ft be
Si—=ri
i EI_M_’E_*I*“*-B*-’
1.2 "
(0 i+ ey
1es . AR [, Ry
de . . " f .
8 a+fe
: o FE|
LE. ;
. 8i } {11)
LC. = -
r cmﬂ:'+1

This equation represents the most probable distribution of the particles among va rious energy
levels for a system obeying Fermi-Dirac statistics and .is therefore known as Fermi-Dirac
Distribution law. :

Q: derive an expression of entropy using Fermi-Dirac distribution law.

Ans: Refer chap 4 ques 2

Q: calculate internal energy and pressure for completely degenerate Fermi Dirac
gas.
Ans:

e e = -

At absolute zero i.e., when T=0, A— . In this case the Fermi-Dirac gas is
completely degenerate,

-AtT =0, we haye
fle)=

=— . =1for0<e<er(0)
AT (AT

= N P

=0fore>er(0)
So that
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[ dnmV ] m)' 2 e de for e <ep(0)

n (e) de [ =g
=0  fore> er (0)
where g7 (0) is given by egn. (18).

Now the total intemal Energy of perfecl Fenm-Dmc gas at T=0i.e, zero pnmt energy of
‘Fermi gas is ' .

€ (0) : : @
o= Ir EH(E]dFSr[iﬂhmv ]{m}m I:f 2 g

o dnmV 172 Em %m}
(]
2 (4mmV ‘ '
=gss-[—;§"—]f2m1‘“le;~{0}ﬁq
Using equation (18), above ;quetiunfgivee
Ink'[ 3n PR 3

Eﬂﬂlﬂm[iﬁ?g,]z e

Nowﬂ\epressureatT O(ie., zempumtpmsure}mgwmby

e 2B T 2 E

| P“"alf since P - arl ':w}
. = S U -
. ) . S Vm{dngV

From above two equatlons,

JSronrequatioas<{26}and-29) if is obvious that a strongly degenerate Fermi-Dirac gas possesses
- energy and exerts a pressure evert at 0 K, quite unlike a Bose-Emstem and classical gases where the

energy and pressure at absolute zero are zero,

Q: calculate internal energy, pressure and specific heat for strongly degenerate
Fermi Dirac gas.

Sol:

In this case the Fermi-gas is stmngl}r degenerate at low temperature and ¢ is still positive,

From equation (17) the number of particles lying in the energy range between € and € +4e is

4nmV e 2 de

n(€)de=f(¢) g () de=gs. o 2m)'”? (- eKT




. r‘ E-mds =

L a .
"_‘[n n (e)de= ZIEPIU}TM 0 e(g e/AT |

and the total integral energy is

72
E=| en(e)de= -
I 2 [eF {iljil3 IJ &t

To solve the integrals of above two equations, let us consider

hr" ¢ (e} de

0 JE- /AT

where ¢ (€) is a simple function of € such that ¢ (¢) =0 whene=0.
The mtegral of equation (33) can be expanded using the memod of Tajrlofs series expa.nsmn,

1e], ] O de T s+ 2 O W e (00

where ¢’, §"” etc. denote the first, third etc dxfferenhals of the function ¢.
' ¢ ©=¢"?

o |
) o) de=3 (e
¥@= {Q .=%er'm

—_— ' -

i LA CE

Now for

n [N emde

2 [ep (270 4T
2

n [2 EF:;/z T (kT’)z

(er (0)]

=
[
TNW

4 3 -5/2 ]
8 o T

ler (0)1 [ 6Z° [n:] ' ]

_CF_=1+ ka+ ka+-m
er (0) 8[ €F ] 640[ & ]

1/2 7 n (kT)

3 1.
* A 2
o
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Remembering that kT < < g, we can take into account only the first two term.s in the bracketed

expression and write
-2/3
L A = kT 2 x kT :
R I SR
This gives .
- 2 2
ef-le;-mu[ -3 T”] ]=[ch011[ E[T] ]
[ ﬂkT ]
& Isrtﬂ}l

s -

Now we make &uemxdeappmnuuhun by puthng er=¢£r (0) in the second term of above

Expressmmeget
_1-:“._1._{1"_1 n kT ’ -
El-; [E}',{'D]]z -5[5{{0] ] ¥ ; . -(39)

Now using equation (39), equation (37) gives
2
= 1( kT ]
(nkTY. (0} +6[£F{0]] l

. RAT
e (D) efm}[ 1 :(ﬂ]] J

| $©=¢" -
E ' 5
J ’#(emi 52

er=¢r (0)

[¢ (E]kﬂl:r 2 EF ' '." (E}]; Er -EEFTLQ r

(4" (€)]e= £ g %EF e

E=,,'-'.‘.._ MI e*’ide
2 [ep 0 gE-tRAT

+1
.3 n 2 52 1 1;2 . J T
‘5**‘;'551“ H= {nk'D {u_kﬂ‘.%'sg m+...]
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= NETE ]

Now using equatlons (39) and (40) we get '

nk’l’ & | | | ——' 2
g Ep ’

3 skt Y [, sexkr 2]
~2nep ) 12 [RKL 5(RET
snﬁf()[ 24[€F-(0)] }[l+8[£;(0)] J

2 kT
ne;(m[ ( <°)T

!

The corresponding pressure is

-p--z.&-a["_ﬁﬂﬂ]{m[m] |

3V 5 V 12| er (0)
dE d|3 ukT
,c,,,{EL;ﬁ[EMFm}I (ﬂi ”V
alt 3
H_!nl:;‘-'ni
2 e (0)
=AT,
’ i 2 N e '
whre A [ 260 }is a constant quantity independent ot temperature, L.e.,

CyeT.

Thus, the specific heat of ideal strongly degenerate’ Fermi-Dirac gas is proportional to the
absolute temperature. We have already seen that the Fermi gas.is strongly dﬂgenerate at low
temperature, therefore, this result holds at very low temperatures.

Q: derive an expression for Fermi temperature, zero point energy and zero point
pressure of electron gas.
Ans:

Furelectrunss-%suﬂwalgs = Zs +1=2

The Fermi energy at OK is:
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o B[ o PR K 3n ]7/‘
0= | 7V, “om|txv2]

i 3::
~8m [ 4
whefe p -*[EVEJZ kg_/m is the.f.im‘n51l}r qf. the electmn gas. Eor conducticn el'ectron%-m_ metals

]m 0625 x 10 ;:uml joule or 39 ph3 eV,

p=01kg/ m’. . '
" The Fermi temperature Tf for lickion gas is

_Eer @) _ " (3n 52%x10° 023 K. : 2
Tr=— _-Bmk[ﬁV]y -(4.52xj105p 73 (2)

For p =01 kg/m’, Te=10° K.

Thus electron gas below 10°K temperature is degenerate. -
The degeneracy factor of an clectron 835, from eqn. (27) of section 8.20 is

ol ¥ o in K
h &s V(Zﬂmkﬂaﬂ ZV(zumkn
: " i
As T — 0, A - o, therefore Mi E'N -11,
I
" :q'f.' +1

5o that for low temperatures N

n.=gsl;-{2nmk'nm; 2 _l 2% dx from (10)

4V (ankT) j"‘ 12,

&

Here we have put g, =2 and have replaced the upper hnut by A at low temperatures near
absolute zero since A - ==, when T = 0

4 en kaJ

T .':3

34’2

-~

f

Hn= é
2
2

ao B (-3 PP .ﬁz Bp
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" This equation represents ihe degeneracy factot of electron gas at low temperature near
absolute zero.

Now subshtutmg h=66x10" joule sec, m= 9x107° kg. k=138x10"> joule/deg and

p= Olkg/m,

4%xw -
o aiad . A = -.(4)

- This mean that at low temperatures the electron gas’is stfongly degenerate. _
Zero point energy of the elctrongas;from eqn. (28) is

‘_E@_S'nhz 3n _3nk( 3n_ V3
,_-“Jt}rn[m;v{gE f.;um[hv.z -

_ g2 : :
. ‘ _3nh’r3nr= § -
] = om | =V —Snsp(ﬂ). :

Zero pﬂmt pressure of the elntmngas, from eqn. (29), is

21 whl( 3n ¥3 _1n W 3
5 Vm dng, V J 5'Vm 8 V).
| _ ik’ 3n P/3 |
WmVinV) -
Q: calculate the expression for electronic contribution to the specific heat of

metals at low temperatures.

Ans:
The electronic contribution to the specific heat of metals at low temperatures is given by

2
JE) _2 5 ( mKT
R [ L aT[ @)1 12[5 (0)] JV

0
== nk
3 kT [€F (0)] Y
= AT
rzk2 "
where S 2er 0) is constant quantity, indgpendent of temperature. - - -
Le., - Cye<T.

Thus the electronic contribution to the specific heat is proportional fo the abso!ute temperature and
vanishes at the absolute zero.
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Q: show that mean energy of free-electron at absolute zero of 3/5 times of

Fermi energy at absolute zero.

Ans:

Ans. Mean rree-electron Energy at Absolute Zero

The number of electrons in an eiect:mn gas ha\-'mg energies between e and €+ de is glven by
h& (E E;-)fkT ) SR

where mt is the mass of electronand V is the valume of the electron-gas -
If N is the total number of electrons, then the Fermi energy £r is given by

'E _h_z 3N 2/3
£” 2m| 8nv

m'.'hg 3N

{a)da &=

{EF) 2 2 ma’f2 8nV
8\V2nv . W

Making this substitution in eq. (i), e get

- N 2 .- dﬁ
n(e) de = == (ef) E*EFV-'CT
E

+1

At T = 0, all of the electrons have energzes less'than or'equal 10 e (ie.€ € E:,:) sothatat T = 0
we have '

. : , .*z(':'E'Mﬂr sF =0

Therefore, at absolute zero '

n(e) e'is— { ) -3n 1/2

Now, let us first find the total energy Ey at absolute zero, which is

E
Eg = ]’ﬁir e n(e) de

E
= e [T e
= e @
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3
‘g N Er.
| number N of electrons Thus

The average energy E(] is thls total energy divided by the tota

§ = N 5F-

Q: Give characteristics of white dwarf stars. Obtain the relation between mass
and radius of white dwarfs.
Ans:
White dwarfs are ~ stars which are much fainter, possess smaller diameter and are very dense as
compared to other stars of the same mass. S -
An ideal white dwarf has the following s;mtﬁmtmns
Content — helium

Mass - 10% kg ~ mass of sun
Density - 10" kg m™* = 10 density of sun
Temperature 10K - ~ temperature of sun

At this extremely high temperature, the helium gas gets completely ionised and so the white
dwarf may be regarded as a gas composed of helium nuclei and elecl:rms The gas of electrons

behaves as an ideal Fermi-Dirac gas of density 10% electrons permetre this corresponds to Fermi
energy of

d © e Ep—-—- 8 Vi.m =20 MeV - e T wfl)
So that the Fermi temperature is
TEE: Eﬂxlﬁxlﬂ —‘lﬂuK : Q)
138x 102 :

- T} .
.- “TE >3 1, the electron gas is highly degenerate. We can regard it as an ideal Fermi gas at

T =0 (i.e. in the ground state) The effect of high electron density is to provide Tp > > T and also to
make the electrons relativistic energies due to increase of mean energy. The Fermi Dirac gas
possesses zero point energy and enormous pressure Py which is balanced by the gravitational
attraction.

We shall first -calculate the et Py exerted by Fermi Dirac gas of relahvl.st:c electron in
the ground state.

The single particle energy levels are given by :

: Eps = [p2 C4m a:"]“2 wel(3)

L IR, B T — . ‘ LI L R ] P £ 1 W
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 where p is momentum,  is rest mass of electron a:1d ¢ is speed of light. The states of electrons
are specified by momentum p and spins 's". The g‘mund state energy of Fermi gas is ,
B=g I @demc)? )
Ipl<pe }
whe:{;pygfﬂmu momentum given by

173
pr=\2m EF= szx—k_ts VT =pe=k ERV] - D)

.~ As energy levels are quite tlose to eadl pther, so. the summatmn mﬂ]r be’ replaced by
_integration; we have- :

‘ iis gfp)ﬁfp={23+1}V“E E
1 F:EE dE i I {ass--— {nreiet‘tl'ﬂl'l]
.. F p . L ' :
=Z%_[;{Plcz_!_ mz_cq’)m‘“‘ﬂzd?- i (6)
Now putting
-E~x=;—E--d.r we get
me
Eu.-.ﬁ%‘—; F e [1-+.r » (mm!.mrdr
h 0
45
=£§'.‘_ r{l...x")mxldx
il . 0
. “ A2 :
where. " fIF}'j: X)) dx
1

E‘[ +1:i}x;+._.. ]; sl

%rp{lﬂq: +..); * xp>>1

where xp << 1 corresponds to non rel.atwlshc case and.xp > > 1 corresponds to the relativistic case;

with xp =

l Bnmc [ Vﬂf(-'ff'}arfv‘]

Pressure Py =~ [ fap+ T

F

5

= [gﬁ;rpu e —f(xp}]

#
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[ 45 =

ﬁ’—‘-"—’—f—xf <<l
15k

-_— 5 ‘“(9]

e (o4 IF]';IF>3’1

If m is mass of electrm mp the mass of pml:on and N is lhe number n! helium atoms, then
mass of star,

M={m+~2mPJN=2mPN (becausem«d{m-?}— «({10)
Radius of star is given by V-a-nR =:-R [:::]l _— o W(11)
o4 3 '
= nR 3
v.3— 8 [mR]
N M/2m, 3 M
S (BN 3 3 MW h con MNA
e ”F'h'[sxv] =8 Su'SnmPRJI _‘m'[.g mp']
: /M a1l . o
= FER L ) [9"“"1]‘ MO > : (12)
. mec  2mme| 8m R X
. 9% M R
where M= 8 m, and R = (h72mmo)

The enormons zero point pressure is balanced by the gravitational attraction to bind the star.
The work done to form the star of radius R from the state of infinite diluteness is given by

We " By.dndr

“where Py is pressure of uniform F. D gas
Thin work is calculated by gravitational self energy which is given by

Us== 3 GM" where G is gravitational constant

5 R
P : ;
T, i 24p0 3 GM o
2 A W7 TR jﬂ s S
Differenhiating both sides with respect to R, we get equilibrium condition
2 SGM2

Pg4nR -*5

3 Gm*

- Po=om i

(14
In terms of M and R it is expressed in

3 Eiﬂ;g—, 2mmc Y1

o (e (5

—_— -
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“This is the value of equilibrium préssute in terms of M and R
Using equation (9) for extreme relativistic. case xp>> 1, no white draft can have a mass larger

o ' 5 W2 he 2 4
(] (e -

= mass of sun
The reﬁned estimate gives

Mg=14x massof sun
Tl'us mass is called the Chandrashekhar Limit.
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