Semester V1

PHYSICS-C XIII: ELECTROMAGNETIC THEORY
(Credits: Theoryv-04, Practicals-02)

Theory: 60 Lectures

Maxwell Equations: Review of Maxwell's equanons. Displacement «Cument. Vector
and Scalar Potennals. Gauge Transformations: Lorentz and Coulomb Gavge, Boundary
Conditions at Interface between Different Media. Wave Equations. Plane Waves in
Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM)
Energy Density. Physical Concept of Electromagnetic Field Energy Density. Momenhun
Density and Angular Momentum Density. (12 Lectures)

EM Wave Propagation in Unbounded Media: Plane EN waves through vacunum and
sotropic dielectne medium, transverse nature of plane EM waves, refractive index and
dielectric constant, wave impedance. Propagation through conducting media, relaxation
tme, skin depth. Wave propagation through dilute plasma, elecinical conductivity of
womzed gases, plasma frequency, refrachive index. skin depth, application to propagation
through 1onosphere. {10 Lectures)

EM Wave in Bounded Media: Boundary conditions at a plane interface berween two
media, Reflection & Refraction of plane waves at plane mterface between two dielectric
media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel
polarization cases, Brewster's law. Reflection & Transmission coefficients Total internal
reflection, evanescent waves, Metallic reflection (normal Incidence) {10 Lectures)

Polarization of Electromagnetic Waves: Description of Linear, Circular and Elhptical
Polanzation. Propagation of E.M. Waves in Anisotropic Media. Symmeinic Nature of
Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation
i Umiaxial Crystal. Double Refraction. Polanization by Double Refraction. Nicol Pnsm.
Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly
and Elliptically Polanzed Light. Phase Retardation Plates: Quarter-Wave and Half-Wave
Plates. Babinet Compensator and 11s Uses. Analysis of Polanzed Light (12 Lectures)



Rotatory Polanzation: Optical Rotation. Biot's Laws for REotatory Polanzation Fresnel's
Theory of optical rotation. Caleulation of angle of rotation. Experimental venfication of
Fresnel's theory. Specific rotation. Laurent’s half-shade polanmeter (5 Lectures)

Wave Guides: Planar optical wave gwides. Planar dielectne wave gwide. Condition of
contimuty at iferface. Phase shift on total reflection. Eigenvalue equanions. Phase and
group velocity of guided waves. Field energy and Power transnmssion. (8 Lectures)

Optical Fibres: Numencal Aperture. Step and Graded Indices (Defimtions, Only).
Single and Multiple Mode Fibres. {3 Lectures)
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Chapter 1

Maxwell Equations: Review of Maxwell's equations. Dhsplacement Current. Vector
and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary
Conditions at Interface between Different Media. Wave Equanous. Plane Waves m
Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM)
Energy Density. Physical Concept of Electromagnetic Field EnergyvDensity. Momentum
Density and Angular Momentum Density. {12 Lectures)

Quel: Write the differential form of Maxwell’s equation in vacuum.

Ans:
In the language of différential vector calculus

N
@ Gauss's law: »

@ Gauss's law for magnetism:

vV.-B=0 (2)




Que2: Give physical interpretation of Maxwell’s equation.

Ans: L 3




@ Relationship between electric field on a closed surface and the
charge enclosed inside it

@ The part in red: source of the electric field

@ Leads to Coulomb's law if Q is a point charge at the centre of S,
asphere of radius r: E - 47r° = Q/eg |

Gauss's law: no magnetic monopoles \
v:-B=0:
\
@ Integrate over a closed volume:
f (V- BiaVe0 (7)
¥ N\
@ lUse a mathematical ideMilit-~ {ﬁmﬁ‘s theorem)
A pre
4 _5{ B.dS—0 (8)

N\

@ Helaﬁgnshfi‘aﬁéhveen magnetic field on a closed surface and the
magnetic charge enclosed inside it

@ Tﬁaptart in red: source of the magnetic field.
@ Vanishing of the source = no magnetic monopoles

Maxwell-Faraday equation: flux through a loop






V % B = pg(d + oIE/ 1) :

@ Integrate over a surface whose boundary is a loop:
f{v « B).dS =pufjrd§+j.-ﬂfujl:ﬂﬂfﬂfj d§  (12)
s s 5
@ Use a mathematical identity (Stokes' theorem)

B-di= pol +ﬁurnf

5

}r—;;;{E.dQ] (13)

@ Relationship between magnetic field along a loop and the rate of
change of magnetic flux through an open surface whose
boundary is the loop

@ /= {-J . dSis the conduction current

@ 1 [z 2 (E dS) is often called “displacement current”, this is the
correction by Maxwell to Ampere’s law

Que3: Write the macroscopic form of Maxwell’s equations

Ans:

Inside a dielectric medium (static case)

@ Gauss's law always valid, when p is the total charge: V-E = p/¢

@ Part of the charge is due to polarization induced in the medium,
which gives rise to the “bound charge”:
pb = —V - P, where P is the polarization

@ Then ¢V - E = {;Jb + ‘r.'r,} ==V -P+ My
where g, is the free charge density



@ Defining D = «E + P, we get Gauss's law in terms of the free
charge density:

V-D = py, (14)

@ The relation D — <E defines the dielectric permittivity of the
medium, <. This is in general not a number but a tensor, and
may not be constant. Wherever it is constant, the dielectric is
called “linear".

Inside a magnetic medium (static case)

@ Maxwell-Faraday equation always valid, when Jis the total
current: V x B = jipd
@ Part of the current is due to magnetization induced in the

medium, which gives rise to the “surface current™:
Jovise = ¥V x M, where M is the magnetization

@ Then V x B = (Jufee ) =100V % M + pigdyy,
where Jj, is the free eurrent density

@ Defining H = B/ jig — M. we get Ampere’s law in terms of the free
charge density:

V xH=J, (15)

@ The relation B — ;.H defines the magnetic permeability of the
medium, ;. This is in general not a number but a tensor, and
may not be constant. Wherever it is constant, the magnetic
medium is called “linear”.



Que4: Define Scalar and vectlal in electromagnetism and write electric and magnetic

fields in terms of potentna%
Ans:

A nnte n whose derivative gives a field, Fields
th forces, potentials are associated with

The magnetic vector nntmtial A is defined so that the
magnetic field B is given by

E=?H..I (1)



The electric scalar potential ¢ is defined so that the electric
field F is given by

i &

Mote that in general, the sCalar and vector potentials are
functions of position and time.

Queb5: Derive boundary conditions at interface between two different media.

Ans:

Boundary Conditions 1: Normal Cémponent of i

We can use Maxwell’s equations to derive the boundary
conditions on the magnetic field across a surface. Consider a
"pillbox” across the surface,

A




Take Maxwell's equation:
v-BE=0 (1)

integrate over the volume of the pillpox, and apply Gauss'
thegrem:

i_?-ﬂ-ﬂ-"=£\lﬂ‘-d.‘:=ﬂ (2)
where 17 is the volume of the pillbox, and 5§ is its surface. Ve

can break the intégral over the surface into three parts: Owver
the flat ends {5y and S3) and over the curved wall {S3):

J(;jﬁ-d3'+ﬂ_iﬂ-d‘3+j‘;_?_ﬂ-u"é:= (3)

In the limit that the length of the pillbox approaches Fera, the
integral over the curved surface also approaches zero. If each
end has a small area A, then equation {3) becomes:

—H1n.'1+ﬂ*;l-n-‘\:|] {4}
ar:
By = Bay (5)

In other woards, the normal companent of the I'I‘IEIﬂI'IEtiC fiald H
must be continuous across the surface.

Boundary Conditions 2: Tangential Component of E

Consider a loop spanfing, the surface.




Take Maxwell's equation:
VxE=-8 (6)
Integrate over the surface bounded by the loop and apply
Stokes’ theorem to get:
L. Lo a8 L.
'E:-:E-d:a'=)|fs-d1=-_fﬂ-ds 7
.«‘I.E:r [ i Js (7}
Now take the limit in which the width of the loop becomes
Zero. The contributions to the integral around the loop O from
the narrow ends become zero, as does the integral of the
magnetic field across the area bounded by the loop. We are
left with:
Eyld — Exl =10 (5
which means that:
Fis = Eoy (9)

Therefore, the tangential component of the electric field is
continuous across the boundary.

Boundary Conditions 3: Normal Cemponent of Ii]

Consider a pillbox crossing the boundary.

surface charge density p.



Take Maxwell's equation:
v.-h=p (10)

Integrate over the volume of the pillbox, and apply Gauss'
theorem:

ﬂ__?-ﬁdtf=qu:’r-d‘*‘.s=j:’pw (11)

Mow we take the limit in which the height of the pillbox
becomes zero., We assume that there is a surface charge density
ps. If the flat ends of the pillbox have (small) area A, then:

—Dy1nA + Dy, A = psA (12)
Dividing by the area A, we arrive at:
Dap = Dy = pjs (13)

Note that if the surface charge density is zero, the normal
component of [ is continuous across the surface. Howeyer,
this is not true for the normal component of £, unless the two
materials have identical permitlivities,

Boundary Conditions 4: Tangential Component of H

Consider a loop across the boundary,

surfnoe current density J;



Take Maxwell's equation;
Vxf=J0+D (14)

Integrate over the surface bounded by the loop, and apply
Stokes’ theorem to obtain:

Y - Lo .- i Y -
vxn-ds=jfn-m=fui-ds —Jfﬂ-ds 15
JII.:J Ll . +ﬁ£ 5 I: )
As before, take the limit where the lengths of the narrow edges

of the loop become zero. Then we find that:
Hypl = Hoyl = J ) 1 (16)

ar;

Hy = Hyy = Jg (17)

where J, | represents a surface current density perpendicularto
the direction of the tangential component of I that is being
matched.

The concept of surface current density is analogous tathat of
surface charge density: it represents a finite current in an
infinitesimal layer of the material.

If the material has finite conductivity, then an infinitesimal layer
of the material has infinite resistance, and No current can flow
(if the electric field is finite).

Therefore, for a material with finite conductivity, we have:

My = Hy (18)

That is, the tangential component of i s continuous across
the boundary



The general conditions on electric and magnetic fields at the
boundary between two materials can be summarised as follows:

Boundary condition: | Derived from. | ._applied 10
Ban = By, v-BH=0 pillbox
Ea = Eq; ‘C-’.«-:E'=-§ Icop
Dap — Dy = ps V-D=p pillbox
Hoy—Hy=-J,, |VexH=J+D loop

Que6: What are Gauge transformations? Explain Coulomb and Lorentz gauge.
Ans:

Gauge transformations
In electro- and magentostatics, we showed that we could
always choose our conventional reference points,
VaQasr—o Y. Af=0
without placing any peculiar constraints on E or B. Now we

have two, more complicatediéquations to simplity, and a
more general approach ismore fruitful.

Consider performing a transformation on A and V: add a
vector o A amd a scalacto V, giving newr potential functions:

A'=A+a V'=V+g



Now, we can't add just any old thing to the potentials; we
need for the fielids arising from the new potentials to be the
same as those from the old:

B'mB F'=F
VuAd'=VeA+Vua YV=¥FV+¥g
U L o
Y=a=0 , or L I_:J C oot i
a=Vi |, ?ﬂ:.!..g.[,q_ﬂ‘]=__m
il i

where 4" i3 a scalar lunction of rand 1.

Combine those last two resulls:
Vi = ———ti' '
L -I'
184

'\'-"[ﬁ-—— D

¢ oot
and integrate the second one over volume, applving the
fundamental theorem of calculus:

1 a3 The integration® constant”™
ﬁ"‘_—"'.ﬂ” fis not a tunétion of
position

We can combine the integration “cofstant” fwith 2’
by defining

.,
x.i.=«i’—~rj'f|::'}=rf
Teany ﬂ—‘l"a‘*-+fif}“——[£+rfm]+ f(t) ~—1§

X = Fkr —] _,.-_ "
Thus forany scalar function 2= A(r,t), the transformation

7z —v-l% A'=A+Vi
makes new Pﬂl-i’.-.‘l'ltl:ll'i l1ut lem.-'e*- the fields F and B

unchanged.

Caau ge
transformation




This sort of operation on potentials is called a gauge
transformation, and a particular choice of 4 is called a gauge
condition.
3 Clever choices of /A can simplify one or the other of the
second-order differential equations for the potentials.

d The solution of these simpler equations for the
transformed potentials gives the same fields as the
solutions to the untransformed, complicated equations

For instance, to simplify Vel ;-li\'.-' A ==4ap,

we could pick £ such that ;

V. A= (0 Coulomb gauge

-1 Coulomb gauge only does a lot of good in
magnetoquasistatics, because otherwise the time
derivative of A gets big enough that you haveto

remember that 124

.E =-T-'”|.f' S
¢ ol

Lorentz gauge

It's hard to compute A in Coulamb gauge. On the other hand,
we could choose 4 such that

' il Lorentz
(V- —_——={
-l" ’I' R af i J'_‘!auﬂﬁ

for which the second-order PDEs we saw several pages back
become 12
VIS ——V-A=—4ap
ol

i
'-‘:'LJ'

e T P

- o |




L Not utterly simple, but at least V and A are separately
determined, and the four equations are very similar o one
another,

Que7: Explain the concept of Poynting vector and Poynting Theorem.
Ans: Poynting vector
When electromagnetic wave travels m space, it cames energy and energy density 1s always
associated with elecme fields and magnetic fields,

The rate of energy travelled through per unit areadie. the amount of energy flowing through
per umit area in the perpendicular direction to the metdent energy per unit tune 1s called povnting
veclar,

Mathenatically poyntng vector 15 represented as
R N
P _ Exfil ‘__LWB

N

T

the direction of poymtig veetor s perpendicular 1o the plane comammg E and H. Poyning

vector is also called as fnstantaneous energy flux density. Here rate of energy transfer P is
perpendiculag 1o both, E'and H. Smce it represents the rate of energy transfer per wmt area, its

unit is Wnth

Poynting Theorem

Poynting theorem states that the pet power flowing out of a given volume V s equal to
the tune rate of decrease of stored electromagnetic energy i that volume decreased by the
conduciion losses,

re. total power leaving the volume = rate of decrease of stored electromagnetic energy
- olume power dissipated due 1o motion of charge



Que8: Give Mathematical proof of Poynting theorem.

Ans:

Proof : The energy demsity camied by the electromagnenic wave can be caleulated using
Maxwell's equations

. - B
..} Cud E = - r;_l- ATT]

as divD =0 () divB

. D
A i

and Curl H = J+= AI¥)
il

takmg scalar product of () with H and (1) with g

i _ B

Le BaddE = H':ﬁ )
; . - - -8

and E.crlH = E.J # E'EE? L)

; : . A s = i Y- b
doing (vi) = (v) Le. HoatlE-FE.cwlH =-H—-E.J-E.—
1 el
| & ct

as div (A x B)

BeulA-AcuwlB



o [adB naD] w-
S0 dj!,'[Ex H] = —[H.‘a'—“+E.—'—‘:|—E.J 1..{"*"ll.i}

et
But B~ uH and P =
B mfiamy 1 8
S0 H.% = HE [|.|H}=Ep§[H‘!]

- &D ks )l
and E.E = EE[EE}_E P

so from equation (vi)  div (E <H) = g

- a1
or EJ = _E [; _{vui)

Integrating equation (vin) over n@




r 1 1 . ity o g
BT [ Ly Jar Jav- (£ ) a
Jdiu’{f.xf[}d‘u’ . j[ﬂxﬂ].ds
v 5

5 E =H]:I'l ﬁ:gﬁ aml

o JE-Tjav _ 2 J’[%pd-l%%aEz}d‘wnHExﬂ}ds
Ll 5

o JExR)ds | —[Slm v [(E Tjav Q\

o j:ids = —i% dv — !{E E@ P=ExH) .(ix)

This 15 also known as work-energy [MQ@IE also called as the energy conservation

-
\\’%Q

N
D




Chapter 2

EM Wave Propagation in Unbounded Media: Plane EM waves through vacuumn and
1sotropic dielectne medium, transverse nature of plane EM waves, refractive mdex and
dielectnic constant, wave 1mpedance. Propagation through conducting media, relaxation
tune, skin depth. Wave propagation through dilute plasma, electncal conductivity of
womzed gases, plasma frequency, refractive mdex. skin depth, application to propagation
through 1onosphere. {10 Lectures)

Quel: Derive solutions for plane waves travelling in (i) vacuum and (ii) isotropic linear
dielectric medium and show the transverse nature of plane waves. Also calculate the energy
density and flux.

Ans:

One of the most important consequences of the Maxwell equations is the equations for
electromagnetic wave propagation in a linear medium. In the absence of free charge and
current densities the Maxwell equations are

dD

V:-D=0 VxH=— 7.1
it i
dB

V-B=0 VXE= ——
dt

The wave equations for E.and B are derived by taking the curl of Vx Hand V x E

JB (7.2)
VXxVxE=-Vxor

?x?xl—i:?x%l—?-

For uniform isotropic linear media we have D = £E and B = pH, where £ and i are in general
complex functions of frequency w. Then we obtain



2 (7.3)
VxVxE= —E;I%TE'

2
‘Fx?xB:—f;:%

Since VW x VX E =V(V:E)— V2E = —V2E and, similarly, V x V x B = —-VZB,

2 (7.4)
V°E = EH%-!-E'

2
VB = z‘#%r—zﬂ

Monochromatic waves may be described as waves that are characterized by a single frequency.
Assuming the fields with harmonic time dependence ™", so that E(x.t) = E(x)e™"™" and
Bix.t) = B(x)e™'"™" we get the Helmholtz wave equations

V2E + suw®E = 0 (7.5)
VB + cuw*B =10

Plane waves in vacuum

Suppose that the mediumfs vaculim, so that £ = £g and 8 = Jg. Further, suppose E(x) varies

in only one dimensian, say the z-direction, and is independent of x and v.

d*E(z) (7.6)

—5 +k’E(2) =0

where the wave number k = @ /c. This equation is mathematically the same as the harmonic
oscillator equation and has solutions

E,(2) = Eetikz (7.7)



where £ is a constant vector. Therefore, the full solution is
F]
E.(z.t) = Eetikz=lwt — EE—!W{!'T';._.} (7.8)
This represents a sinusoidal wave traveling to the right or left in the z-direciton with the speed

of light ¢. Using the Fourier superposition theorem, we can construct a general solution of the
farm

E(z,t) =F(z —ct) + G(z + ct) (7.9)

Plane waves in a nonconducting, nonmagnetic dielectric

In a nonmagnetic dielectric, we have g = p, and the indexof refraction

) (7.10)

£

niaw) =

We see that the results are the same as in vacuum, except that the velocity of wave
propagation or the phase velocity is now v'= cfndnstead of c. Then the wave number is

Transverse Nature of EM waves

k(w) = ﬂ{m}% (7.11)

Electromagnetic plane wave of frequency w and wave vector

Suppose an electromagnetic plane wave with direction of propagation n to be constructed, n
where is a unit vector. Then the variable z in the exponent must be replaced by n - X, the

projection ef X in the n direction. Thus an electromagnetic plane wave with direction of
propagation n is described by

E(x.t) = gelkx—iot _ g iknx-iwt

(7.12)
B(x.t) = Beikx—iwt — Beiknx—iot



where £ and B are complex constant vector amplitudes of the plane wave. E and B satisfy the
wave equations (Eq. 7.5), therefore the dispersion relation is given as
(11 ‘ ?I 1 3 h

k? = gpw® = [:u%l}z - k= n—

Let us substitute the plane wave sclutions (Eg. 7.12) into the Maxwell equations, This
substitution will impose conditions on the constants, K, £ and B, for the plane wave functions

to be solutions of the Maxwell equations, For the plane waves, one sees that the aperators
i

E=—r'w-. V=ik

Thus the Maxwell equations become

o HAﬂD (7.14)
‘) = o _E . k-E=0 k}fﬂ‘:-t‘.#mﬁ
0B B = =
V-B=10 FKE:—FI_ ESK SRESES

where k = kn. The direction n and frequency « are completely arbitrary. The divergence

equations demand that
n-€=0 and p»B =10 (7.15)

This means that E and B are both perpendicular to the direction of propagation n. The
magnitude of K is determined by the refractive index of the material

w 7.16
k=n (7.16)

L 2

Then B is completely determined in magnitude and direction

n (7.17)
'Ea-“l'e‘yn:-tEmcnx-E

Energy density and flux



The time averaged energy density is

1 1 1
u==(E-D°"+B-H") :"(-!'E-E' +--E-B')
4 4 [
This gives
i 1
== EI:_HEEZ
2| | 5 |E]
The time averaged energy flux is given by the real part of the complex Poynting vector

1
5= E(E *H)
Thus the energy flow is

1 L !
S == /:|E|£n=_—n‘}£|‘-1:n=u'l.r
E‘Jﬂ 2

Que2 : Derive solutions for plane waves travelling in conducting medium. Also derive the
expression of (i)Propagation constant (ii) wave impedance (iii) skin depth for a conductor.

Ans:

We will consider a plane electromagnetic wave travelling in a linear dielectric medium such as
air along the z direction and being incident at a conducting interface. The medium will be taken
to be a linear medium. So that one can describe the electrodynamics using only the E and H
vectors

As the medium is linear and the propagation takes place in the infinite medium, the vectors I-,!_ H and k
are still mutually perpendiculars We Take the electric field along the x direction, the magnetic field along
the y- dirrection andthe propagation to take place in the z direction, Further, we will take the
conductivity to be finite and the conductor to obey Ohm's law, | = aF. Consider the pair of curl
equations of Maxwell,

. i3] aH
FRE==g =g

. aF . OE
FHH—}‘J‘EE-JE‘FEE



Let us take E, H and k to be respectively in x, y and z direction. We the nhave,

_9E,  @8H,
WPRE) =g =y
i.e.,
dE, aH, s
= gl )
and
dH,, dE,
[F * H]r = _E = gf, t& ET:
i.e.

.1I

dz

aE
+a&+fﬁf=u (2)

We take the time variation to be harmenic | ~&™ Jso that the time derivative is equivalent to
@ multiplication by iw. The pair of equations (1) and (2) can then be written as

e,
— 1 =0
32 HooH,,

A,
—— 4+ aE, +iacE, =10
dz

-

We can solve this pair of coupled equations by taking a derivative of either of the equations with
respect ta z and substituting the other inta it,
d*F o, a*‘E

dz; + i P = ﬂz; — g + twe)E, =0




Define, a complex constant v through
pt = ipw(a + iwe)
in terms of which we have,

BRE. - .
——yE;=0 (3
577 =Y (3)
In an identical fashion, we get
¥H;
=5~ i, =0 {4

Solutions of (3) and (4) are well known and are expressed in terms of hyperbolic functions,
E, = Acosh(yz) + B sinh(yz)
M, = € cosh(yz) + D sinh(y2)

where A, B, C and D are constants to be determined. If the values of the electric field at z=0is
E; and that of the magnetic field at z=0is H,, wehave A = E, and € = H|,.

In order to determine the constants B and D, let us return back to the original first order
equations (1) and (2)

L3
dz

.1I

iz

+dpwH, =0

+ dEy+ (weE, =0

Substituting the solutions for. Eand H

yEp sinh{yz) # By cosh(yz) + iwp(Hycosh(yz) + D sinhiyz)) =0
This equation must remain valid for all values of z, which is possible if the coefficients of sinh
and cosh termis are separately equated to zero,

Eoy + iwuD =0
By + iwuHy =0

The former gives,



¥

Jipe(o + fwe)
[yt

a + [we
= — - Eﬂ
| icopt

Ey

N

where
feaapil
o  + [{E
Likewise, we get,
B ="-nH,

Substituting these, our solutions for the E and H become,

E¢ = E; cosh(yz) — nH, sinh(yz)
E
H, = Hy cosh(yz) — ?ﬂ sinh{yz)

The wave is propagating inthe zdirection. Let us evaluate the fields when the wave has

reached z = [,
E, = E, cosh(yl) = nH, sinh(yl)

E
H, = Hy cosh(yl) - ?nsinh{r{}
If | is large, We can approximate

¥i

sinh(yl) = cosh(yl) = ET

we then have,



The ratio of the magnitudes of the electric field to magnetic field is defined as the “characteristic

impedance” of the wave
771 feagl
H, cai b o 4 fwe

Let ws look at the full three dimensional version of the propagation in a conductor. Once Again, we start
With the two curl equations,

aH
FEE-“‘}I‘E i
dE
FKH-JE"PE'E

Take a curl of both sides of the first equation,

d(v x H)

= N E
Px(VxE)= V(RFE)=VE=—p =

Az there are mo charges or currents, we ignore thedivergence term and substitute for the curl of H from
the second equation,

: il il
P E= —-(Jf + E—)

dt at
_ 0B oE
= ai At e lﬂl’z

We take thepropagating solutions to be

E= E:n EI{E"T_‘”]



s0 that the above equation becomes,
k2F = (iwpo + wpe)E
s0 that we have, the complex propagation constant to be given by
k% = jwpe + w? e

£0 that

k = Jwp(we + ia)

k is complex and its real and imaginary parts can be separated by standard algebra,

we have

1,2

JIE a*

Thus the propagation vector p andtheattenuation factor « are given by

The ration f;- determines whether a material is a good conductor or otherwise. Consider a good
conductor for which & 3 we. For this case, we have,



Mhe speed of electromagnetic wave is given by

The electric field amplitude diminishes with distance as ™. The distance to which the field penetrates
before its amplitude diminishes be a factor &~ ! is known as the "skin depth™ , which is given by

1 2
d=—= _
a WUT

The wave does not penetrate much inside a conductor, Consider electromagnetic wave of frequency 1
MHz for copper which has a conductivity of approximately 6 x 107 0t Substituting these values,
one gets the skin depth in Cu to be abouwt 0.067 mm. For comparison, theskin depth in sea water which
is conducting because of salinity, is about 25 cm while that fordfresh water is nearly 7m. Because of small
skin depth in conductors, any current that arises in the metalbecause of the electromagnetic wave is
confired within a thin layer of the surface.

Que3: Explain EM wave propagation through plasma and derive characteristic plasma
frequency.

Ans:

Consider a point particle of mass m and electric charge i interacting with a lingarly polarized, sinusoidal,

electromagnetic plane wave that propagates in the £ -direction. Provided that the wave amplitude 15 not

sufficiently I.mjge 1o cause the particle 1o move at relativistic speeds, the electric component of the wave exerts a
much greater forge on the particle than the magnetic component. [This follows, from standard electrodynamics,

because the ratio of the magnetic to the electric force is of order By 0fE} | where Ej is the amplitude of the

wave clectric field-strength, 8y = Ey/c the amplitude of the wave magnetic ficld-sirengih, ¥ the particle

velocity, and € the velocity of light in vacuum. Hence, the ratio of the forces is approximately vfc

Suppose that the electric component of the wave oscillates in the x =direction, and takes the form



E.(z,1) = Eg cos(wt = kz), (789)

where Kk is the wavenumber, and @ the angular frequency. The equation of motion of the particle is thus

m—— =qkE,, (790)

where X measures its wave=induced displacement in the x =direction. The previous eéquation can be solved to
give
q E

m{; cos(wt — kz). (791

£ =—

Thus, the wave causes the particle to execute sympathetic simple harmonic oscillations, in the X =direction, with
an amplitude that is directly proportional to its charge, and inversely proportional to its mass.

Supposc that the wave is actually propagating through an'inmagnetized clectrically neutral plasma consisting of
free electrons, of mass m, and charge —e , and free ions, of mass m; and charge + . Since the plasma is

assumed to be electrically neutral, each mﬁes must have the same equilibrium namber density, 1, . Given that

the ebectrons are much less massive than theons fi.e., m, < m; ). but have the same charge (modulo a sign), it

follows from Equation (791) that the wave=-induced oscillations of the electrons are of much higher amplitude
than those of the ions. In fack to a first approximation, we can say that the electrons oscillate while the ions
remain stationary. Assuming that the electrons and ions are evenly distnibuted throughout the plasma, the wave-

induced displacement of an individual electron generares an effective electric dipole moment in the X -direction

of the form 1, = —e X {the other component of the dipole is a stationary ion of charge +# located at x = () ).
Hence, the X =direcied electric dipole moment per unit volume is
P.=np,=-nex (792)
Given that all of the electrons osgillate according 1o Equation (791) (with § = —¢ and m = m, ), we oblain

n, e Eg

Plzt)=- t=kz).
(z,1) ey cos(w it — kz) (793




And,

OE, __[ an,

T (794)
OH, 10
Fr i (795)
Thus, writing E, in the form (289), H in the form

where Z is the effective impedance of the plasma, and P, in the form (793 ) Bguations (794) and (793) yield
the nonlinear dispersion relation

=Kl +w’

- p? (797)

where € = ”-g'ﬁ:}.ln i5 the velocity of light in vacuwm, and the so-called plasma frequency,
1/2

é
G-(22)".

& m, (79%)

15 the charagieristic frequency of ollective electron gacillations in the plasma (Stix 1962}, Equations {294} ancd
{795 also yield



where Zg = ﬂpgf € 15 the impedance of free space, and

141/2
Kc W,
n=—=|1-—
(W w?

the cffective refractive index of the plasma. We, thus, conclude that sinusoidal eleCtromagnctic waves
propagating through an unmagnetized plasma havie a nonlincar dispersion relation. Morcover, this nonlineanty
arises because the effective refractive index of the plasma is frequency dependent.

Substituting values of permittivity, electron mass and electronic charge, plasma frequency
becomes, fe=9,/Ny



Chapter 3

EM Wave in Bounded Media: Boundary conditions at a plane interface berween two
media. Reflection & Refraction of plane waves at plane interface between two dielectric
media-Laws of Reflection & Refraction. Fresnel's Fonnulae for perpendicular & parallel
polarization cases, Brewster's law. Reflection & Transmission coefficients Total mtemal
reflection, evanescent waves, Metallic reflection (normal Incidence) (10 Lectures)

Quel: Derive laws of reflection and refraction for plane waves incident at normal interface
between two dielectric media.

Ans:

We begin with the simplest possible case: a plane wave narmally incident on a plane dielectric
interface. We will see that the boundary conditions aresatisfied only if reflected and

transmitted waves are present.

X
o
E n n'
EJ’
Fig 7.5 Reflection and
f
k k" k _ transmission at normal
\ ‘,/ i "= incidence
B BJF Bf
E.H
1!

-

Fig. 7.5 describes the incident wave (E, B) travelling in the z-direction, the reflected wave

(E”, B”) travelling in the minus z-direction, and the transmitted wave (E', B') travelling in the z-
direction, The interface is taken as coincident with the xy-plane at z = 0, with two dielectric
media with the indices of refraction, n for z << 0 and n' for 2 = 0. The electric fields, which are
assumed to be linearly polarized in the x-direction, are described by




E = e, Eelllz-al) (7.49)

E = E#Ei-l‘.’ i{k'z—m!j

— —E'JE“'EEI:_kI_m‘]
where
ko= nﬂ, k' = W T (7.50)
- [
From Eqg. 7.17,
n
B=—kxE&E
ck

Therefore, the magnetic fields associated with the electric fields are given by eq 7.49

¢B = eynEe"“‘"“”
¢B' = e n'E'eilk'z-at)

cB" = EynErrei{—kz—mt}

(7.51)

Clearly the reflected and transmitted waves must-have the same frequency w as the incident
wave if boundary conditions at 7 = i are to be satisfied for all ¢, The E-field must be
continuous at the boundary,

E—E" =FE' (7.52)

The H-field must also becontinuous, and for nonmagnetic media (i = 4’ = i), 50 must be the
B-field;

n(E+E") =n'E’ (7.53)

Eqgs. 7.52 and 7.53 can be solved simultaneously for the amplitudes £’ and E" in terms of the
incident amplitude £



r
pr TR 21 (7.54)

n"+n

The Fresnel coefficients for narmal incidence reflection and transmission are defined as

E”_n'—n ; E’_ 2n (7.55)
E n+n' E n'+n

=

Forn’ = n, there is a phase reversion for the reflected wave.

What is usually measureable is the reflected and transmitted average energy fluxes per unit
area (a.k.a., the intensity of EM wave] given by the magnitudewf the Poynting vector

(7.56)
5—1 ExH’ S A E|?
= S|Ex H'| = =nceolE|

We define the reflectance R and the trapsmittance T for normal incidence by the ratios of the
intensities

S\-H' nf_n 2 5? nr 4_nnr [?_5?]
R === '2=_ T:—:—tﬂz_
s i (n'+n) ' g nE | (n' +n)?

With the Fresnel cpefficients given by Eq. 7.55, R and T satisfy
R+T=1 (7.58)
for any palr of nonconducting media, This = an expression of energy conservation at the

interface,

Que2: Derive laws of reflection and refraction for plane waves incident at oblique interface
between two dielectric media and calculate Fresnel coefficients.

Ans:



Oblique incidence

We consider reflection and refraction at the boundary of two dielectric media at obligue
incidence. The discussion will lead to three well-known optical laws: Snell’s law, the law of
reflection, and Brewster's law governing polarization by reflection. Fig. 7.6 depicts the situation
that the wave vectors, k, k', and k", are coplanar and lle in the xz-plane. The media for z < 0
and 2 > 0 have the indices of refraction, n and n’, respectively. The unit normal to the
boundary is n. The plane defined by k and n is called the plane of incidence, and its normal s in
the direction of k x n.

Fig 7.6 Reflection and transmission at
oblique incidence. Incident wave K strikes
plane interface between different media,
Eiving rise to a reflected wave K™ and
refracted wave k',

W

L]

The three plane waves are:

Incident
E SEgeil Ty (7.59)
B=—kxE
Refracted
E = Ea_:,f:]-:" x=iul ] (7.60)
B' = rﬂk; k' = E
Reflected -
E = Elel(k"x-at) (7.61)
B=— k'xE"
where
o R T (7.62)

C C



Phase matching on the boundary

Mot only must the refracted and reflected waves have the same frequency as the incident
wave, but also the phases must match everywhere on the boundary to satisfy boundary
conditions at all points on the plane at all times:

r o 7.63
(K- X)zmp = (K - X)ymo = (K" - X)ymg 25
This condition has three interesting consequences. Using the vector identity
nxnxx)={n-x)n—x (7.64)
and n - X = 0 on the boundary, we obtain
X=-nx{nxx) (7.65)
We substitute this into Eq. 7.63,
k-x=-k:[nx(nxx)]=—(kxn) {n*Xx) (7.66)

and similarly for the other members of Eq. 7.63. Since X is anarhitrary vector on the boundary,
Eg. 7.63 can hold if and only if

kxn=k'*xn=k"xn {7.67)
This implies that
{i} All three vectors, k, K’ and k", lieina plane, i.e,, k' and K" lie in the plane of
incidence;
i Law of reflection; “HlL= “h| = K5l =R s, thus
i} f refl Ik xn|l = K" xn| = ksind, = ksind,, th
(7.68)
& =08,
{iii) Snell’s Law: |k x.n| = |k’ x n| = ksind;, = k' sin #,, thus
nsin®; = n'sinf, {7.69]
unda iti Fresnel fficient

At all paints on the boundary, normal components of D and B and tangential components of E
and H are continuous. The boundary conditions at 2 = 0 are

(i) [£(Eq + E5') — £'Ep)-n =10 (7.70)
{ii) [kxE;,+k" xEf —k'xE,] - n=0
(iii) [Es+Ey —Ej]%xn=20

(iv) E{kx Eq + K" % E{{}—%k’ x E,{]] xn=0



In applying the boundary conditions it is convenient to consider two separate situations: the
incident plane wave is linearly polarized with its polarization vector (a) perpendicular (5-
polarization) and (b) parallel {p-peolarization] to the plane of incidence (see Fig. 7.7). For
simplicity, we assume the dielectrics are nonmagnetic (4 = u" = ).

[a) s-polarization

The E-fields are normal to n, therefore (i} in Eq. 7.70 is automatically satisfied. (iil) and (iv) give
Eg+ Ef —Ej=0 (7.71)
and
niEy = Eg')cosf; = n'Ejcos @, =0 (7.72)
while (i}, using Snell's law, duplicates (iii). With Eqs. 7.71 and 7.72, we obtain thes-pol Fresnel
coefficients,

Eg 2ncosd; 2reos
L: e = - =
Eg ncost+n'cosy e+ n"2 — n? sin? 6, (7.73)
and
Ey _ncos8;—n'cosly Rcosl; - J1? = n?sin? @, (7.74)

Te T N :
*  Ep mcost; 4 nlcosé, ncos 8 + n"* —n?sin? g

where, using Snell’s law, we could write

cos = 4/ 1 = (n/n')? sin? 8, {7.75)

(b) p-polarization

The B-fields are noemal to n, therefore (i) in Eq. 7.70 is automatically satisfied. [iii} and (iv] give

cos B (Ep — Ey ) —cos 8, B = 0 (7.76)
and
n(Ey+ Eg)=n'Eqg =0 (7.77)

while {i}, using Snell's law, duplicates (iv]), With Eqgs. 7.76 and 7.76, we obtain the p-pol Fresnel
coefficients,

E 2n cos B, Znn’ cos & {7.78)
Ey n'costh+ncoséy  n'?cosd, + nyn' — nsin? g,

a—

tp




and

Ey n'cos®;—ncos®, n' cosd; —nn't —n?sin? (7.79)
T = — = 1
P Ey, n'cos@ +ncost,  n?cosh, + nnT — nZsina,
For normal Incidence, 1, = -1, = —(n — n')/(n+n'), because we assign opposite directions

for E and E" for p-polarization.

(a) s-polarization (b) p-polarization

Fig 7.7 Reflection and refraction with polarization (a) perpendicular (s-pelarization) and (b) parallel (p-
polarization) to the plane of incidence

For certain purposes, it is more convenient toexpress the Fresnel coefficients in terms of the

incident and refraction angles, &, and &, enly. Using the Snell’s law, nsinf; = n"sin #;, we can

wWrite

2ncos 8, 2cos8,; 2cos 8 sin 8,

[, = -= =
* ncosf; +n' cosd, cos 6, +Ecnsﬂ, sin @, cos 8; + cos 8, sin 8,
n




then
i 2 5in 8, cos G; (7.80)
T sin(l, + 8;)
Similarly,
. sin(fh, = ;) (7.81)
* sin(@, + ;)

- 2 5in 8, cos (7.82)
P gin(d, + 0,) cos{, = 8,)

and
i tan(d, — &) (7.83)
P tan(f, + 8,)

Que3: Derive Brewster’s angle and explain total internal reflection.

Brewster's angle and total internal reflection

We next consider the dependence of R and T on theangle of incidence, using the Fresnel

coefficients.

Brewster angle

We see that r, in Eq. 7.88 vanisheswhen 0 + #; = 1/2, Using Snell’s law, we can determine
Brewster's angle 1y = {}; at which the p-polarized reflected wave is zero:

1§
nsinfy = n'sin [;— ﬁ'ﬂ) = n'cos Oy

ar

n'
gy (7.84)
It
Polarization at the Brewster angle is a practical means of producing polarized radiation. If a
plane wave of mixed polarization is incident on a plane interface at the Brewster angle, the
reflected radiation is completely s-polarized. The generally lower reflectance for p-polarized

lights accounts for the usefulness of polarized sunglasses. Since most outdoor reflecting



surfaces are horizontal, the plane of incidence for most reflected glare reaching the eves is
vertical. The polarized lenses are oriented to eliminate the strongly reflected s-component. Fig.
7.8 shows R; and R, as a function of §; withn = 1 and n' = 1.5, as for an air-glass interface.
The Brewster angle is #y = 56" for this case.

Lp
' Fig 7.8 Reflectance for s- and ’I
p-polarzation at an air-glass .
0.8 interface. Brewster's angle is f' 'I
HB = Eﬁu II; 1
/ §
0.6} X
R el 4
n=15 o
0.4 :
Ry
0.2} §) R,
e N g
0 10 20 0 7 4 |50 60 70 £0 90
</

Tatal internal reflection

There is another case in which Ry = K, = 1. Egs. 7.74 and 7.79 indicates that perfect reflection
occurs for & = m /2. The incident angle for which &, = w /2 is called the critical angle, 8; = 4.
From Snell’s law

[

s5in@,. = ol (7.85)
n

£, can exist anly.ifn > n', Le., the incident and reflected waves are in a medium of larger index
of refraction than the refracted wave.



0.8} Fig 7.9 Reflectance for s- and
p-polarzation at an air-glass
interface. Brewster’s angle is

0.6+ f
R i @ = 34° and the critical
‘ angleis 8. = 42°
I n=15
N n=1
0.2} Ry i
e Rp §,/9C
0 10 20 30 40 S0 60 % 70 _ 80 90
&;

For waves incident at &, the refracted wave s propagated parallel to the surface. There can be
no energy flow across the surface. Hence at that angle of incidence there must be total
reflection. For incident angles greatepthan the critical angle &, = f., Snell's law gives

n

sin &, =1f5fnﬂ,- }%sin!ﬂ; =1

This means that 1, is a complex angle with a purely imaginary cosine.
(7.86)

| ysin gy ?
et {sin Et.) w
Then Eqs. 7.78.and 7.79 indicates that r; and 1, both take the form

a—th
a+ib

where a and b are real, therefore,

)
a—ib

a+ib

R=|r|? =|




The result is that R, = K, = 1 for all #; > 8. This perfect reflection is called rotal internol
reflection. The meaning of this total internal reflection becomes clear when we consider the
propagation factor for the refracted wave:

, e (7.87)
{.II:’-: = EH-: (xsin@+zcosfh) _ E‘;:E"‘ [51:;&:}1

where
1

5

: & = 2 - - 7.88
= —ik'costl, = kysin? #, —sin? @, = T-..n"smz 6; —sin? 8, : ,

With the wavelength of the radiation, 4. This shows that, for @; > 0., the refracted wave is
propagating only parallel to the surface and is attenuated exponentially beyond the interface.
The attenuation occurs within a few wavelengths of the boundary except far 6, = ..

Qued4: Explain reflection from metallic surface (normal incidence)

Ans:

REFLECTION FROM A METALLIC SURFACE

For a metallic medium the dielectric function and the index of refraction
complex valued functions. This 15 alse the case for semiconductors
insulators in certain frequency ranges near and at absorption bands. Fresn
equations are still valid but the angles in the equations are now complex val
and do no longer have the obvious geometrical interpretation,

For normal ineidencewe have

i B - 2 , Y
R =[£*;:: ’.*,L] s[a=Ril" Amy—m) lky k)
|12 + i {ra3+n|}”+[k3 +k)°

where

n=n+ik=n(l+ix)



where K'is the so called extinction coefficient.

For metallic systems

-

fi=+E&=, £+4m0o/w
For normal incidence the refracted. or rather transmitted. wave willvary as

E, - E:‘{r‘.l.i'”:-ﬂ.l‘} 2 f-.{:t,,.'_ JE_r'[.rhl', I—0i' )



Chapter 4

Polarization of Electromagnetic Waves: Descnption of Linear, Circular and Elliptical
Polanzation. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of
Dielectric Tensor. Fresnel’s Formmla. Umaxial and Biaxial Crystals. Light Propagation
i Umiaxial Crystal. Double Refraction. Polanzation by Double Refraction. Nicol Pnism.
Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly
and Elliptically Polanzed Light. Phase Retardation Plates: Quarter-Wave and Half-Wave
Plates. Babinet Compensator and its Uses. Analysis of Polarized Light  ~ (12 Lectures)

Quel: Explain linear, circular and elliptical polarization of light.

Ans:
Linear Polarization

A plane electromagnetic wave is said to be linearly polarized. The transverse electric field wave
is accompanied by a magnetic field wave as illustrated.

%

Electric field
1' \ Magnetic field

~

Circularly polarized light consists of two perpendicular electromagnetic plane waves of equal
amplitude and 90° difference in phase. The light illustrated is right- circularly polarized.

Circular Polarization




If light is composed of two plane waves of equal amplitude but differing in phase by 90°, then
the light is said to be circularly polarized. If you could see the tip of the electric field vector, it
would appear to be moving in a circle as it approached you. If while looking at the source, the
electric vector of the light coming toward you appears to be rotating counterclockwise, the light
is said to be right-circularly polarized. If clockwise, then left-circularly polarized light. The
electric field vector makes one complete revolution as the light advances one wavelength
toward you. Another way of saying it is that if the thumb of your right hand were pointing in
the direction of propagation of the light, the electric vector would be rotating in the direction of
your fingers.

direction of

51 propagation

direction of
propagation
Electric ;

Fields )
/ Mote the 90°
phase difference

If this wave were approaching

an observer, its electric

v vector would appear to be
rotating counterclockwise.
This is called right -
circular polarization.

Elliptical Polarization

Elliptically polarized light consists of two perpendicular waves of unequal amplitude which
differ in phase by 90°. The illustration shows right- elliptically polarized light.



direction of
propagation

direction of
propagation

A

If this wave were approaching
an observer, its electric
vector would appear to be
rotating counterclockwise.
This is called right -

elliptic polarization.

If the thumb of your right hand were pointing in the direction of propagation of the light, the
electric vector would be rotating in the direction of your fingers.

Que2: What is dilectric tensor and why is it symmetric in nature? Explain the plan wave
propgation in anisotropic media and derive Fresnel formula.

Ans:

- In an 1sotropic medinm. the mduced polanzation P is always parallel to the elecmic field E
and 15 related by a scalar’ quamtity (the susceptibility) that is independent of the field
direction.

- In anisotropic media, "B, = ¢, v, E, + Viady + v Er )
E, = g\ XaE; T \nE, T \nE,)
P, = eg\xqE; + \pE, + \nE. )

Alongwthe pnncipal axes of the crystal (vamishing off-diagonal elements).

Fr=e\nk;, F,=6xnl, F, =ik



- In terms of the dielectric permirtivity lensor i D= EJ.,I'E:I where €= E,:,[l.—xu:l

- For a homogeneous. nopabsorbing, and magnetically isotropic medinm.
the energy density of the stored eleciric field in the anisotropic medivm

o 4 1
I":EE‘ D=E£|F|J'D_r

Differentiating the above eqn. f',= :].';:,JlF,.E; + E‘,E}].

Using the Povofing theorem. the net power flow mio a unit vol m a lossless mediom 15
-v - (E<H=F-D+H-B — -v - (B<H=Ee E+H- F
The first term must be equal to 7, (the Poynting vector comesponds to the,endrgy flux),

1 : ; : _
—e \EE+EE)=¢.EE, — ¢;=¢; (symmeric)
* For a lossless medium, € = ¢,": the conservation of elecromagnetic field energy requires
that the dielecnc tensor bed"Hemminan”,

Plane Wave Propagation in Anisotropic Media

- In an amsotropic medimm such as a crystalpthe phase velocny of light dependes on its state
of polarizarien as well as ns diFecrion ofvpropagation.

- For given direction of propagafion in/the mednun. there exist. i general. mvo eigenwaves
with well-defined eigen-phase velogities and polanzation directions.

- Consider a monochromane plane wave of angular frequency w pmpagatiugk m the anisoropic
medium with%an electri¢ field £ ¢ 7% " and a magnetic field H 7% " where

k 15, the’wavevector k= (w/clns with s 15 a unit vector along the propagation.
and w15 the refraction mdex to be detenmmed.

Maxwell's eqn: kx BE=— wuH, kx H=—weF
— kx (k< B)+w'ueE=0

e-00
- In the principal coordinate system. e=|0 €, 0

00¢



w'pe, — k5= ki kek,

Kk, E,
Then. the wave equ is given by k. ' jeg, = k2 — k] kg EI:J= 0
k.k, kk,  wlue,— k= EME,
e~ K-k Rk, k.k,
For nontrival solutions, det k. fm'# o ey ke ={). representing
Kk, kok whpe, — ki —

a 3-dim. surface of k space (momennun space). This surface is. Lnuwl;l as the normal
surfice and consists of two shells, which, in general. have 4 poinls

COomImon

— The mwo lines going through the ongin and thes€ points are known as rhe opric_aves

- Given a direction of propagation. there are in gemeral 'two Kk values which are the

intersections of the direction of propagation and.the, normal s.urfar:e
T]lr.:se two k values correspond 1o two different/phase velocities (w/k) of the waves
pagating along the chosen diecnon.

|ll.' nvu ase velocities always comespond 0 nvo marnally orthogenal polanzations.

- The direction of the electmic field ﬁ:ﬂqr associated with these propagation
ke

2 - 1'2;..:5:
ky

i — e,
k,

s "
k= pe,

- For propagation in the direction of the optic axes. there is only one value of k and thus only
onie phase velocity, There are fwo _independent directions of polarization




- In terms of the direction cosines of the wavevector, wsing k= {w/c)ng for the plane wave.
{Fresnel's equation of wave normmals)

SR
Lef S0
p 5 g,
= | 1]
S e — [ -c-l.ul.:l | —
11" — €. € V& g M T E K n It — Euf €g
)
n"—e. e

Que: 3 What are uniaxial and biaxial crystals?

Ans: For a given propagation direction, in general there are two perpendicular polarizations for
which the medium behaves as if it had a single effective refractive index. In a uniaxial material,
these polarizations are called the extraordinary and the ordinary ray (e and o rays), with the
ordinary ray having the effective refractive index n, and ne. On the other hand, a biaxial crystal
is characterized by three refractive indices a, 8, and y applying to its principal axes.

Que4: Explain the phenomenon of double refraction or birefrigence.

Ans:Double refraction, also called birefringence is an optical property in which a single ray of
unpolarized light entering an anisotropic medium is split into two rays, each traveling in a
different direction. One ray (called the extraordinary ray) is bent, or refracted, at an angle as it
travels through the medium; while the other ray (called the ordinary ray) passes through the
medium unchanged.

In case of double refraction, the ordinary ray and the extraordinary ray are polarized in planes
vibrating at right angles to each other. Additionally, the refractive index (a number that
determines the angle of bending specific for each medium) of the ordinary ray is observed to be
constant in all directions; on the other hand, the refractive index of the extraordinary ray varies
according to the direction taken because it has components that are both parallel and
perpendicular to the crystal’s optic axis. Because the speed of light waves in a medium is equal
to their speed in a vacuum divided by the index of refraction for that particular wavelength, an
extraordinary ray can move faster or slower than an ordinary ray.



Electromagnetic radiation propagates through space with oscillating electric and magnetic field
vectors alternating in sinusoidal patterns which are perpendicular to one another and to the
direction of wave propagation. As visible light is composed of both electrical and magnetic
components, the velocity of light through a substance is significantly determined by the
electrical conductivity of the material. Light waves travelling through a transparent crystal must
interact with localized electrical fields during their journey. The relative speed at which
electrical signals travel through a material varies with the type of signal and its interaction with
the electronic structure, and is calculated by a property defined as the dielectric constant of the
material. The relationship defining the interaction between a light wave and a crystal through
which it passes is governed by the inherent orientation of lattice electrical vectors and the
direction of the wave's electric vector component. Therefore, a meticulous consideration of the
electrical properties of an anisotropic material is fundamental to the understanding of light
wave interaction with the material as it propagates through.

Queb5: Explain the principle of Nicol prism with a schematic.

Ans: A Nicol prism is a type of polarizer, an optical device made from calcite crystal used to
produce and analyse plane polarized light. It is made in such a way that it eliminates one of the
rays by total internal reflection, i.e. the ordinary ray is eliminated and only the extraordinary ray
is transmitted through the prism. It was the first type of polarizing prism, invented in 1828 by
William Nicol (1770-1851) of Edinburgh. It consists of a rhombohedral crystal of Iceland spar (a
variety of calcite) that has been cut at an angle of 68° with respect to the crystal axis, cut again
diagonally, and then rejoined as shown, using a layer of transparent Canada balsam as a glue.

o-ray

'.".. ﬁﬂ [}
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Unpolarized light ray enters through the left face of the crystal, as shown in the diagram, and is
split into two orthogonally polarized, differently directed rays by the birefringence property of
the calcite. The ordinary ray, or o-ray, experiences a refractive index of no = 1.658 in the calcite
and undergoes total internal reflection at the calcite—glue interface because its angle of
incidence at the glue layer (refractive index n = 1.55) exceeds the critical angle for the interface.
It passes out the top side of the upper half of the prism with some refraction, as shown. The
extraordinary ray, or e-ray, experiences a lower refractive index (ne = 1.486) in the calcite and is
not totally reflected at the interface because it strikes the interface at a sub-critical angle. The
e-ray merely undergoes a slight refraction, or bending, as it passes through the interface into



the lower half of the prism. It finally leaves the prism as a ray of plane-polarized light,
undergoing another refraction, as it exits the far right side of the prism. The two exiting rays
have polarizations orthogonal (at right angles) to each other, but the lower, or e-ray, is the
more commonly used for further experimentation because it is again traveling in the original
horizontal direction, assuming that the calcite prism angles have been properly cut. The
direction of the upper ray, or o-ray, is quite different from its original direction because it alone
suffers total internal reflection at the glue interface, as well as a final refraction on exit from the
upper side of the prism

Que6: What is a wave plate or retarder? Explain its working principle in detail.

Ans: A waveplate or retarder is an optical device that alters the polarization state of a light
wave travelling through it. Two common types of waveplates are the half-wave plate, which
shifts the polarization direction of linearly polarized light, and the quarter-wave plate, which
converts linearly polarized light into circularly polarized light and vice versa. A quarter-wave
plate can be used to produce elliptical polarization as well.

Waveplates are constructed out of a birefringent material (such as quartz or mica), for which
the index of refraction is different for different orientations of light passing through it. The
behavior of a waveplate (that is, whether itiis a half-wave plate, a quarter-wave plate, etc.)
depends on the thickness of the crystal, the wavelength of light, and the variation of the index
of refraction. By appropriate choice of the relationship between these parameters, it is possible
to introduce a controlled phase shift between the two polarization components of a light wave,
thereby altering its polarization.

Principles of operation

A waveplate works by shifting the phase between two perpendicular polarization components
of the light wave. A typical waveplate is simply a birefringent crystal with a carefully chosen
orientation and thickness. The crystal is cut into a plate, with the orientation of the cut chosen
so that the optic axis of the crystal is parallel to the surfaces of the plate. This results in two
axes in the plane of the cut: the ordinary axis, with index of refraction no, and the extraordinary
axis, with index of refraction n.. The ordinary axis is perpendicular to the optic axis. The
extraordinary axis is parallel to the optic axis. For a light wave normally incident upon the plate,
the polarization component along the ordinary axis travels through the crystal with a
speed v, = ¢/no, while the polarization component along the extraordinary axis travels with a
speed Ve = ¢/ne. This leads to a phase difference between the two components as they exit the
crystal. When ne < no, as in calcite, the extraordinary axis is called the fast axisand the ordinary
axis is called the slow axis. For ne > no the situation is reversed.


https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Birefringence
https://en.wikipedia.org/wiki/Optic_axis_of_a_crystal
https://en.wikipedia.org/wiki/Calcite

Que7: How will you differentiate among plane polarised, circularly polarised and elliptically
polarised light?

Ans: Plane Polarised Light: The light beam is allowed to fall on Nicol prism. If on rotation of
Nicol prism, intensity of emitted light can be completely extinguished at two places in each
rotation, then light is plane polarised.

Circularly Polarised Light: The light beam is allowed to fall on a Nicol prism. If on rotation of
Nicol prism the intensity of emitted light remains same, then light is either circularly polarised
or unpolarised. To differentiate between unpolarised and circularly polarised light, the light is
first passed through quarter wave plate and then through Nicol prism. Because if beamis
circularly polarised then after passing through quarter wave-plate an extra difference of A/ 4 is
introduced between ordinary and extraordinary component and gets converted into plane
polarised. Thus on rotating the Nicol, the light can.be extinguished at two plates. If, on the
other hand, the beam is unpolarised, it remains unpolarised after passing through quarter wave
plate and on rotating the Nicol, there is no change in intensity of emitted light (Figure 6.18).
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(i) Elliptically Polarised Light. The light beam is allowed to fall on Nicol prism. If on rotation of
Nicol prism, the intensity of emitted light varies from maximum to minimum, then light is either
elliptically polarised or a mixture of plane polarized and unpolarised. To differentiate between
the two, the light is first passed through quarter wave plate and then through Nicol prism.
Because, if beam is elliptically polarised, then after passing through quarter wave plate, an
extra path difference of A/ 4 is introduced between 0-ray and E-ray and get converted into
plane polarized Thus, on rotating the Nicol, the light can be extinguished I'lt two places. If, on
the other hand, beam is mixture of polarised and unpolarised it remains mixture after passing
through quarter wave plate and on rotating the Nicol intensity of emitted light varies from
maximum to minimum.
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Ques8: Explain briefly the working of Babinet-Soleil Compensator.

Ans: A Babinet-Soleil Compensator is a continuously variable zero-order retarder (wave plate)
that can be used over a broad spectral range. The variable retardance is attained by adjusting
the position of a long birefringent wedge with respect to a short fixed birefringent wedge. The
wedge angle and fast axis orientation is the same for both wedges so as to hve uniform
retardance across the entire clear aperture of the Babinet compensator.

A compensator plate is connected to the fixed wedge, with its fast axis orthogonal to both the
fast axis of the wedges and the propagation direction of the light. When the long birefringent
wedge is arranged such that the total thickness of the two stacked wedges is equal to the
thickness of the compensator plate, the net retardance of light passing through the Soleil-
Babinet compensator is zero. The position of the long wedge can then be adjusted with a
micrometer in order to create a retardance transmitted beam of light.



Que 9: Differentiate Positive and negative uniaxial crystals.

Ans: Uniaxial birefringence is classified as positive when the extraordinary index of refraction
Ne is greater than the ordinary index no. Negative birefringence means that An = ne—no is
negative. In other terms , the polarization of the fast (or slow) wave is perpendicular to the
optical axis when the birefringence of the crystal is positive (or negative, respectively).



Chapter 5

Rotatory Polanzation: Optical Rotation. Biot's Laws for Eotatory Polanzation Fresnel's
Theory of optical rotation. Calculation of angle of rotation. Experimental venfication of
Fresnel’s theory. Specific rotation. Laurent’s half-shade polanmeter. (5 Lectures)

Que 1: Explain rotary polarization of light.

Ans:
Rotary Polarization

When a beam of plane polarized light propagates through certain substances or crystals, the
plane of polarization of the emergent beam rotated through a certain angle.

This phenomenon is called rotatory polarization and this property of the crystal and
other substances is called optical activity or optical rotation and substances which show this
property are called optically active substances.

Que 2: Discuss Biot’s law of optical rotation?

Ans: He showed (Biot’s Law) that the amount of rotation of the plane of polarization of light
passing through an optically active medium is proportional to the length of its path, and to the
concentration, if the medium is a solution of an active solute in an inactive solvent, and that the
rotation is roughly inversely proportional to the square of the wavelength of the light

o
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Que 3: Explain Fresnel’s theory of optical rotation and give mathematical proof.

Ans:
Fresnel Theory

* This explanation was based on the following assumptions:

1. Aplane polarized light falling on an optically active medium along its optic axis splits up
into two circularly polarized vibrations of equal amplitudes and rotating in opposite
directions —one clockwise and other anticlockwise.



In an optically inactive substance these two circular components travel with the same
speed along the optic axis. Hence at emergence they give rise to a plane polarized light
without any rotation of the plane of polarization.

In an optically active crystal, like quartz, two circular components travel with different
speeds so that relative phase difference is developed between them.

In dextro-rotatory substance v>vi and in leavo rotatory substance vi>v,..

On emergence from an optically active substance the two circular vibrations recombine
to give plane polarized light whose plane of vibration has been rotated w.r.t that of
incident light through a certain angle depends on the phase diff between the two
vibrations.

Mathematical Treatment

Let a beam of plane polarized light be incident normally on'a quartz |:||u’|5te.

Let the vibrations i the incident polansed beam be L Xa

E =2E cosar and =10 A ,F-‘“ o _‘ .
where 2 15 the amphitude of the incidentvabrations, , S K.E..a -
the above eq” can be rewntten as £, = £ cosan + E cosami.. (1) _ y

and E ='Eysitban - £ sinex...(2) '

From the Huygen's principle of Supegposition, £ = E' + E.  and f-.',u= EF4+E ,’
Theretore eq s (1 )and (2)may be eonsidered 1o be the e -4....:
resultant of the two eaurcular vibrations represented 4 ’@x\l
by the eq's .F'.':": w ., cosN andd -".';l: m f s e (3) : 'EEJ:EJ ;'-;‘

components of clogkwise circular motion in two muwally L™ directions
!__':'. - I»'-.l._ cos o :"L”,';I_ f'_-II = —F_-:_ !-i..H'I ﬂ#["l]‘

compoeneats of anticlockwise circular motion in two mutually 1" directions

(foroptically inactive substance- the angular speeds of L and R components are same)



If the resultant vibrations for the emergent beam
along the x axis: £, = E* + F' =2F cosen
along the y axis: E, =E* + E{ =0

Plane of vibration 15 along onginal direction

The result shows that two oppoesitely directed circular motions. ﬂ}
egual velocity combine to give linear motion along the .d'mﬁ'nah

af motion (eptically inactive material)

For optically active substances |

*= According to Fresnel the two circular components are pmpugated through
the plate with different angular speeds. So when they emerges out of the
crystal there 1s a phase difference & between them.

* Suppose clockwise component advanges in front of the other.
Ef =E cos(en+8) Ef<Eysin(an +6) [clockwise]

Ef = E, cosaor E: ==F sin ax [anti clockwise]

The resultant displacement along lhg two axes are
B ~R L
,f!f\ =E +E,

E =E +E}

= E, eos(o+ 0) + E, cos o , » =E sin(ot+d)-E, sinot
o o ! y 3 Py

=2E, COs > cos| X + o { =2FE_sin—cos| e +— | ....... (6)
2 2 ‘ 2 2



C A ] ' &) ) ) g &
E =2F cos—cos| o 4 s =R si—cos)| ol 4
T c "| + L = | 3 |

These resultant vibrations along the x and y axes are

to e¢ach other and are in the same period and phase.

Dividing eq”(5) by (6) we get
;

. i
. in %
E 5 ¥ o
— = = = lan —
I d 2
i s
2

This is equation of straight line inclined at &2 with x-axis.
That is with the vibrations of incident light.

Que4 : Define specific rotation of an optically active substance.

Ans: The specific rotation of an optically active substance at a given temperature for a given
wavelength of light is defined as the rotation (in degrees) produced by the path of one
decimeter length in a substance of unit density (concentration)

0 1060 .
a,=— or a,==—— (If£isincm)
(C (C
The unit of specific rotation is deg.(decimeter)-1(gm/cc)-1

The molecular rotation is given by the product of the specific rotation and molecular weight of
the substance

Specific rotation for solids

Goclor@=cal

The specific rotation of an optically active solid substance at a given temperature for a given
wavelength of light is defined as the rotation (in degrees) produced by the path of 1 mm length
in a substance.

Que5: What is a polarimeter?



Ans: It is a device which is used to measure the optical rotation produced by an optically active
substance. By measuring the angle e the specific rotation of an optically active substance can be
determined.

Two types of polarimeters are generally used in the laboratory now a days:
(a) Laurent’s Half Shade Polarimeter

(b) Biquartz Polarimeter

Queé6: Explain working of Laurent’s Half Shade Polarimeter in detail.

Ans: Construction: It consists of a monochromatic source S which is placed at focal point of a
convex lens L. Just after the convex lens there is a Nicol Prism P which acts as a polariser. His a
half shade device which divides the field of polarised light emerging out of the Nicol P into two
halves generally of unequal brightness. T is a glass tube in which optically active solution is
filled. The light after passing through T is allowed to fall on the analyzing Nicol A which can be
rotated about the axis of the tube. The rotation of analyser can be measured with the help of a
scale C. Laurent’s half shade polarimeter is shown in Figure 6.22.

Optically active
soluton
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FIGURE®6.22

Working: In order to understand the need of a half shade device, let us suppose that half shade
device is not present. The position of the analyzer is so adjusted that the field of view is dark
when tube is empty. The position of the analyzer is noted on circular scale. Now the tube is
filled with optically active solution and it is set in its proper position. The optically active
solution rotates the plane of polarization of the light emerging out of the polariser P by some
angle. So the light is transmitted by analyzer A and the field of view of telescope becomes
bright. Now the analyzer is rotated by a finite angle so that the field of view of telescope again



become dark. This will happen only when the analyzer is rotated by the same angle by which
plane of polarization of light is rotated by optically active solution.

The position of analyzer is again noted. The difference of the two readings will give you angle of
rotation of plane of polarization.

A difficulty is faced in the above procedure that when analyzer is rotated for the total darkness,
then it is attained gradually and hence it is difficult to find the exact position correctly for which
complete darkness is obtained.

To overcome above difficulty half shade device is introduced between polariser P and glass
tube T.

Half Shade Device

It consists of two semicircular plates ACB and ADC. One half ACB is made of glass while other
half is made of quartz. Both the halves are cemented together. The quartz is cut parallel to the
optic axis. Thickness of the quartz is selected in such a way that it introduces a path difference
of ‘A/2 between ordinary and extraordinary ray. The thickness of the glass is selected in such a
way that it absorbs the same amount of light as is absorbed by quartz half.

Let us consider that the vibration of polarisation is along OP. On passing through the glass half
the vibrations remain along OP. But on passing through quartz half these vibrations will split
into 0- and £-components. The £-components are parallel to the optic axis while O- component
is perpendicular to optic axis. The O-component travels faster in quartz and hence an
emergence 0-component will be along OD instead of along OC. Thus components OA and OO
will combine to form a resultant vibration along OQ which makes same angle with optic axis as
OP. Now if the Principal plane of the analyzing Nicol is parallel to OP then the light will pass
through glass half unobstructed. Hence glass half will be brighter than quartz half or we can say
that glass half will be bright and the quartz half will be dark. Similarly if principal plane of
analyzing Nicol is parallel to OQ then quartz half will be bright and glass half will be dark.



When the principal plane of analyzer is along AOB then both halves will be equally bright. On
the other hand if the principal plane of analyzer is along DOC. then both the halves will be
equally dark.

Thus it is clear that if the analyzing Nicol is slightly disturbed from DOC then one half becomes
brighter than the other. Hence by using half shade device, one can measure angle of rotation
more accurately.

Determination of Specific Rotation

In order to determine specific rotation of an optically active substance (say sugar) the
polarimeter tube T is first filled with pure water and analyzer is adjusted for equal darkness
(Both the halves should be equally dark) point. The position of the analyzer is noted with the
help of scale. Now the polarimeter tube is filled with sugar solution of known concentration and
again the analyser is adjusted in such a way that again equally dark point is achieved. The
position of the analyzer is again noted. The difference of the two readings will give you angle of
rotation 0. Hence specific rotation S is determined by using the relation.

[S]ltA=6/LC

The above procedure may be repeated for different concentration.



Chapter 6

Wave Guides: Planar optical wave guides. Planar dieleciric wave guide. Condition of
continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and
group velocity of gmided waves. Field energy and Power transmission. (8 Lectures)

Quel: What is an optical waveguide.

Ans: An optical waveguide is a physical structure that guides electromagnetic waves in the
optical spectrum. They are used as components in integrated optical circuits, as the
transmission medium in long distances for light wave communications, or for biomedical
imaging.

Fig. 1 shows the configuration of a typical planar dielectric waveguide. A slab of dielectric
material, called film or core, surrounded by media of lower refractive indexes, called cover and
subtract as the upper and lower, respectively

x: polarization direction

Z: waveguide axis

unguided ray guided ray




Fig. 1 {Planar dielectric wavegmide configuration. The widih of the slab is d and refraction imdex is ng. ad
the cover aind sulviract have aie refrachon index fiz)

A light rav can be guided inside the slab by total mtemal reflection in the zigzag fashion. Only
certain reflection angle 8 will constructively mterfere in the waveguide and hence onlv certain
waves can exist in the wavegmide (this will be discussed more m section 2 wavegnide modes),

Case 1: 6 smaller than complement of the critical angle
B<@ =x/2-sin"(n, /n)=cos"(n, n) gase |

Total internal reflection will happen at the boundanes. Then the rays can ravelan 7 direction by

bouncmg between the slabs surfaces without loss of energy (figure showed m the nglt of Fig.1).
And we also assume that all the materials are lossless.

Case 2: 0 larger than complement of the critical'angle

i_'j-":=-|§r =m/2—sm™(n, /m)=cos " (n, /n) case 2

Total mtemal reflection can not happen at the botmdartes. Then rays will lose a portion of their
power at each reflection. and eventuallythey will'vanish.

Que2: Derive the wave equation for a slab waveguide.

Ans:

Consider the asyvmmetrigslab waveguide shown in figure 2.2, Maxwell's equations
can be writtgn in tewns'of the refractive index r; (1 = 1,2, 3) of the three lavers and
by assuming that the material of each laver is non-magnetic and isotropic, that is

jr= jrg amd € is a scalar, we have
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If we apply the curl operator todeg *-u, we get:

JH

ot

V = —y{,n?fﬂm (2.10)
where wp%.ﬁ has been used o eliminate H, To simplify further, we use the

vector identity

VxVxA = V(V-A)-TA (2.11)

where A Is an arbitrary vector field, Using equations 2.7 and 2,11, equation 2.10



can be simpdificd to:

e ?F}"E _—
V°E |riurr,r.l,—mz (2.12)

Writing the above equation in phasor notation (assuming a time-harmonic field

of the form ¢™7*") we obtain

VE+EniE=10 (2.13)
which 15 the familiar three-dimensional vector wave equation fopsangform dielectne
with refractive index ;. Here &, is the free-space wavg nimnBier eiven by &, =
wyfftate- The electrie fichl vector E in cquation Ef,lﬂejﬂ W phasor quantity, which
is complex and has both a magnitnde and a [ﬂhqﬂ". Mo addition, E is in general a
funetion of space co-ordinates o, g, = and Mlgn]\:ﬁr frequency @ E s independem of
time sinee the time dependenog has, been removed by the phasor transformation.
We may simplily equation 2,13 by Elﬁ‘llmilu.', that the structure is uniform in the v-
divection | see hgure 2.1 ]m“l .WEIEI.H 14 iuﬁu]l.}' i the I'L'—[I.il.'i'["l.i.[l-t]l.. This allows s 1o
assume that the field E iﬁmﬁt'-.-ﬂ uniform in this divection. Thus -ﬁ; is replaced by zero.

Il we furihée assume a z~dependence of the form o, with 7 as ihe longitudinal
i el I -

propagation censtant. equation 2,13 is simplificd and takes the form:

rr-lE ¥ b ¥
— (K - FYE =0 (2.14)

|
L



The above equation is known as Helmholiz equation. In this case E is a nnetion
of o only and the equation is a second order ordinary differential equation.  The
propagation constant F can be exprossed as 0§ = .I'.',,.u,fr‘r. where o, If 15 called the
effective index. The field of a slab ‘n‘.'il'l.'i':l.'.lliﬂd' 15 in general a ."-'”I”"l'l'{ﬁhjﬂll of Trans-
verse Blectrie (TE) polarized field and Transverse Aagnetic (TM) polarized Geld.

Que3: Derive Transverse Electric (TE) and Transverse Magnetic modes of waveguides.

Ans:

Transverse Electric (TE) Guided Modes

By nsing equation 2,11, the TE sealar wave equat ion for the three wavegnide regions

l-i1|':.“'!'~ '|hl' “ll]‘lil'l'l'jll.ﬂ fn:'rn:

£E, _ _
:H}li —r'D, aadl N r=h {2.15)
i E 3

rh-?’r + " E’IH = 0 . U=<x< il {2.16G)
o By,

r'E, =0, r=2d (2.17)



where v = 3 — klng, ¢ = kiny — 7 and p° = 3% — kS, For guided modes,
we regpuire that the power to be confined largely to the ceutral region of the guide
and no power escapes from the structure. The form of equations 2015, 216 and
217 then implies Chat this requirement will be satishied for an oscillatory solution in
the core region (g7 = 0) with evanescent tails in the cladding and substrage regions
Q

(r2 ¢ = 0) (see figure 2.4). Assaming rny > ng = iy, it is straighif v shoaw

that for guided modes, the possible range of 3 15 given by ke & bona = kg,

o5 are obtained in

(2.18)
(2.19)
Thus, for guided lx?bw.‘iﬂlmiml of £, in the three regions is
r*”\/ <0
E, \a gr) + B sinfqr) < e < 2d (2.20)

(Acos(2dy) + Bsin(2dg)) e P20 > 24

where A amd B are constants, By examining equation 2,20, the boundary condition
on E, is satisfied by its comtinuity at both & = 0 and & = 2d. The other tangential

field component to the wavegnide interfaces, namely ., mast also be continuons at



these interfaces, From equations 2,19 and 2020, we have:

rAe"™ =

. = .,:u, 1 ol{—Asin(gr) + Beos(qr)) €< 2d (2.21)

—p(Acos(2dy) + Bsin(2dy)) e7rr=3 ]

The continmity condition of . vields two equations.  One an &i;d the
second at o = 2, that is: @Q

rd = qbf o (2.22)
anl &\
if [—Asin(2dyg) + B eos(2dyg)) = — sty ) + B sinl2dg)) (2.23)

Eliminating the ratio A/B f

i hum.imm vields [39, 40]:
g AP+ T)
@2{&;} = (2.21)
fa)

jation for the TE modes of the asymmetric slab waveg-

This is the eigenv:
uide. g wi s an implicit relationship which involves the wavelength, refrac-

tive i he lavers and core thickness as known quantities, and the propagation

constant 7 as the only unknown quantity.

The svimmetric waveguide [y = iiq)

can only support modes with even or odd electric feld patterns. In this ease it can

b easily shown that the eigen-value equation 2,24 reduces 1o (p = r):



g
tan({2eg) = .’-P"f - [
¢ — p?

|
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[ (=]
[mly |
—

An E‘xiltlll'l" “r ||l|." Iil'l[l [k L |..|[| [IJ" Ilrlf'..' |[Il|'|ll'-h “F[ il lIII'l"';"-Eil_".-l"l' hlillll \‘.-‘i“'{':l.'lu.ilill"
s given in ligure 2.4
Transverse Magnetic (TM) Guided Modes

The wave equation for this polanzation is obtained in terms of the magnetic field

component ff, as:

I ; - @ W
d® ~r'H, =0, 220 (2.20)

“H 2

'l = 0 . 0<r<2d (2.27)

= '

[“H, 2

Y pPH, = 0, r>2 (2.28)

il )

From equation 2.6, the other ficld components of the TA modes are obtained in

terms of H_,r I

)
E = — H, (2.29)
i O, .
£.= A EJ‘.r"ll (2.30)

]

Thus, the solution of H, in the three regions for the goided modes is



|"

Ce =i

Hy =4 Cecos(qr) + Dsinlqr) =< 2d

C cos(2dy) + Dsin(2dg)) e~ PlE=20 5> 24
| (€ cos(2dy !

where C and I are constants. The field component £, is obtained from equations

230 and 2.31 as lollows:

iy

E. = iq & (=Csinfqr) + D cos{gr)) o

is- (C cos(2dy) + Dsind 2dg)) e \! = 2

%

Continuity of E. at o = 0 and & = 2d leads

r g |
: 1

and

%{—{T ﬂll{?r@ﬂtﬁ[?ﬂq]] = 1_—1_? (C cos( 2y ) + 1 sin 2dy))

Eliminatill@ﬂ from these two equations results in
2 “* 3
E tan(2dy) = [: e I:.ET}
T = nypr

7
r_!‘!'.“_‘,?” < @

(2.33)

(2.34)



which is the eigemalue equation for TA modes of an asvmmetnie slab waveguide,
An example of the TM mode patterns for a symmetrie slab waveguide is given in
figure 2.5, As evident from the figure, £, is continmons across a layver interface hat
its dervative 15 discontinuous there, cansing a sudden change in the slope of ff,

[]H'I'l'.

Que4: Derive the mode number and cut-off condition in optical waveguide.
Ans:

The notation TExy (and similarly TA ) is nsed to refdryvo dmode possessing N
nodes in the distribution of £, for TE modes and #y forT3 modes, The value of ¥
can be obtained b taking the argument of thedangent in the egenvale equations
2.2 and 235 to be (2dg — N7). Since@y ety > ny. the cut-off condition is given

by

3 = kg (2.3G)
This correspands to loss of optical confinement due 1o loss of exponential decay
away fromgt e wavegnide in the sulstrate. The resultant effect is a field-spreading

throughout she sulstrate region.
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Figure 2.5: TM Mode :hm Slab Wavegnide
The cut-off mudil.iu“ Q Ey and TMy modes can be found by using the
above delinitions for gh » mumbers and cut-offs.  Substituting equation 2,36

it equation EW with the appropriate expressions for o, g, © at eut-off, the

cut-off H%\r the TE modes is stated as [30:
E 2R wp g — g A -
tan{2dk.(n; — n3)"'" — Nx) = (2.37)

: ny— 3



where &, corresponds to the cut-off wave number for T £y, In terms of the normal-

izedl Trequency (v), given by

v = kydin? — nd)'? {2.38)

the cut-off value v, for the TEy mode is [39]:

: a5 12 aF %
ot (28) ]+ ‘Q\' (23

v =

s | —

e usee] to obtain

where tan™" is restricted to the range 0 — 7/2, Equation 2

M. the mumber of TE guided modes and is fm{\

1 nt — 2\ @
M={—(2v—tan™" || Z— 2.
! {F ( ¢ — tan [(uf - :Lﬁ) | (2.40)

wnext largest integer,

where the subscript ind indicates

The corresponding ﬂ@h"timl and number of guided TA modes are given
as follows
\\ 1 H — 2y N7
[ ' 2 3) ‘]+; (2.41)
My u., -3 2

. ay 12
M= {% (21: ~ tan™' !(})! CE - :E) D } (2.12)



Chapter 7

Optical Fibres: Numerical Aperture. Step and Graded Indices (Definitions Only)
smgle and Multiple Mode Fibres. (3 Lectures)

Que 1: Explain Optical fibre using a schematic.

Ans: Optical fibers are fine transparent glass or plastic fibers which can propagate light. They
work under the principle of total internal reflection from diametrically opposite walls. In this
way light can be taken anywhere because fibers have enough flexibility. This property makes
them suitable for data communication, design of fine endoscopes, micro sized microscopes etc.
An optic fiber consists of a core that is surrounded by a cladding which are normally made of
silica glass or plastic. The core transmits an optical signal while the cladding guides the light
within the core. Since light is guided through the fiber it is sometimes called an optical wave
guide. The basic construction of an optic fiber is shown in figure (1).

v'f |[‘§“\‘—___‘_“\_"‘--_\
| ~— 1A
'\\\--\ L~ \[(’5— Cladding
~—— \““‘—-_-‘ | (Refractive index N1)
_‘-_“\__ “‘_\\ | ~l\‘
e \ T
ﬂ\“‘\#k~// Core

=5 (Refractive Index N2)

N2 > N1

0 N2 N1

L
B

Core
Darmewnr

Que 2: Explain and calculate the numerical aperture of an optical fibre.

Ans: In order to understand the propagation of light through an optical fibre, consider the
figure (2). Consider a light ray (i) entering the core at a point A, travelling through the core until
it reaches the core cladding boundary at point B. As long as the light ray intersects the core-



cladding boundary at a small angles, the ray will be reflected back in to the core to travel on to
point C where the process of reflection is repeated .ie., total internal reflection takes place.
Total internal reflection occurs only when the angle of incidence is greater than the critical
angle. If a ray enters an optic fiber at a steep angle(ii), when this ray intersects the core-
cladding boundary, the angle of intersection is too large. So, reflection back in to the core does
not take place and the light ray is lost in the cladding. This means that to be guided through an
optic fibre, a light ray must enter the core with an angle less than a particular angle called the
acceptance angle of the fibre. A ray which enters the fiber with an angle greater than the
acceptance angle will be lost in the cladding.

Cladding e

Fiber Axis A

Figure 2 Propagation of light in'an optical fibre

Consider an optical fibre having a core of refractive index n1 and cladding of refractive index n..
let the incident light makes an angle i with the core axis as shown in figure (3). Then the light
gets refracted at an angle ¢ and fall on the core-cladding interface at an angle where,

8" = (90 — 6) 0

By Snell’s law at the point of entrance of light in to the optical fiber we get,

N, sini = n, sin@ (2)

Where ngis refractive index of medium outside the fiber. For air ng =1.

When light travels from core to cladding it moves from denser to rarer medium and so it may
be totally reflected back to the core medium if ' exceeds the critical angle 6'c. The critical
angle is that angle of incidence in denser medium (n1) for which angle of refraction become
90°. Using Snell’s laws at core cladding interface,
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Figure 3.

n, sinf’, = n, sin90

or
) M
Sing', = —

Therefore, for light to be propagated within the core of optical fiber as guided wave, the angle
of incidence at core-cladding interface should be greater than J'. As i increases, & increases
and so ¥’ decreases. Therefore, there is maximum value of angle of incidence beyond which, it
does not propagate rather itiis refracted in to cladding medium ( fig: 3(b)). This maximum value
of i say imis called maximum angle of acceptance and ngsin imis termed as the numerical
aperture (NA).

From equation(2),

NA = n, sini,, = n, sin@
= n, sin(90- 4,)

Or NA = n, Cos @',

= n, /1— Sin?@’,

. M
sinf’, = —
From equation (2) ny



Therefore,

The significance of NA is that light entering in the cone of semi vertical angle im only propagate
through the fibre. The higher the value of imor NA more is the light collected for propagation in
the fibre. Numerical aperture is thus considered as a light gathering capacity of an optical fibre.

Numerical Aperture is defined as the Sine of half of the angle of fibre’s light acceptance cone.

i.e. NA= Sin 8, where 0,, is called acceptance cone angle.

Let the spot size of the beam at a distance d (distance between the fiber end and detector) as
the radius of the spot(r). Then,

s5ing = > =
re+d

Que3: Differentiate between single and multiple mode optical mode fibres.
Ans:

Single Mode Fiber Optic Cable

Single Mode fiber optic cable has'a small diametral core that allows only one mode of light to
propagate. Because of this,the number of light reflections created as the light passes through
the core decreases, lowering attenuation and creating the ability for the signal to travel further.
This application is typically used in long distance, higher bandwidth runs by Telcos, CATV
companies, and Colleges and Universities.

Left: SinglesMode, fiber is usually 9/125 in construction. This means that the core to cladding

diameter ratio is'9 microns to 125 microns.
1254m



https://www.multicominc.com/wp-content/uploads/2014/08/fiber-optic-cable-internal-structure-singlemode.jpg

Multimode Fiber Optic Cable

Multimode fiber optic cable has a large diametral core that allows multiple modes of light to
propagate. Because of this, the number of light reflections created as the light passes through
the core increases, creating the ability for more data to pass through at a given time. Because
of the high dispersion and attenuation rate with this type of fiber, the quality of the signal is
reduced over long distances. This application is typically used for short distance, data and
audio/video applications in LANs. RF broadband signals, such as what cable companies
commonly use, cannot be transmitted over multimode fiber.

Above: Multimode fiber is usually 50/125 and 62.5/125 in construction. This means that the

core to cladding diameter ratio is 50 microns to 125 microns and 62.5 microns;to. 125:microns.
125um 125pum

S50pm 62.5um

Que 4: Give a qualitative difference between step- index and graded-index multimode fibre.
Ans:

Step-Index Multimode Fiber

Due to its large core, some of the light rays that make up the digital pulse may travel a direct
route, whereas others zigzag as they bounce off the cladding. These alternate paths cause the
different groups of light rays, referred to as modes, to arrive separately at the receiving point.
The pulse, an aggregate of different modes, begins to spread out, losing its well-defined shape.
The need to leave spacing between pulses to prevent overlapping limits the amount of
information that can be sent. This type of fiber is best suited for transmission over short
distances.

Graded-Index Multimode Fiber

Contains a core in which the refractive index diminishes gradually from the center axis out
toward the cladding. The higher refractive index at the center makes the light rays moving
down the axis advance more slowly than those near the cladding. Due to the graded index, light
in the core curves helically rather than zigzag off the cladding, reducing its travel distance. The
shortened path and the higher speed allow light at the periphery to arrive at a receiver at about
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the same time as the slow but straight rays in the core axis. The result: digital pulse suffers less
dispersion. This type of fiber is best suited for local-area networks.

P«"_Lah Please Like, Share and Subscribe
' g i to our YouTube Channel
[ || => All Lab Experiments




