
L e a r n i n g  O b j e c t i v e s

After reading this chapter you will be able to

L0 1 Understand crystalline, amorphous 

solids, primitive lattice and Wigner-

Seitz primitive cell, and types of  

crystals

LO 2 Know about translation vectors, 

lattice planes, and significance and 

representation of Miller indices

LO 3 Illustrate structures of NaCl, CsCl, 

and diamond, coordination number 

of simple cubic lattice, bcc lattice, fcc 

lattice

LO 4 Learn about interplanar spacing and 

nearest neighbour distance and atomic 

radius

LO 5 Discuss packing fraction for sc, bcc, fcc, 

diamond, hcp, interatomic attractive/

repulsive forces

LO 6 Explain ionic bond, covalent bond, 

metallic bond, van der Waals bond, 

hydrogen bond, crystal structure 

analysis i.e., Bragg’s law and 

spectrometer, Laue method, powder 

method

LO 7 Evaluate vacancies, concentration of 

Schottky defects and Frenkel defects, 

compositional and electronic defect

A crystal structure is a unique arrangement of atoms. It consists of a set of atoms which are identical in 

composition, arrangement and orientation, called basis and a lattice. Bases are located upon the points of 

a lattice, which is an array of points repeating periodically in three dimensions. The points can be thought 

of as forming identical tiny boxes, called unit cells, that fill the space of the lattice. The lengths of the 

edges of a unit cell and the angles between them are called the lattice parameters. A crystal structure and 

symmetry play an important role in determining many of its properties, like electronic band structure and 

optical properties.

It is clear that a crystal structure is formed by the addition of a basis of atoms to every lattice point. 

Mathematically, it can be represented as

Crystal structure = Lattice + Basis
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 14.1 Types Of sOLids 

The solids are broadly classified into two groups, namely, crystalline solids and amorphous solids.

14.1.1 Crystalline solids

Crystalline solids are arranged in fixed geometric patterns or lattices. Ice, methanol and sodium chloride are 
a few examples of crystalline solids. They have orderly arranged units and are practically incompressible. 
Crystalline solids also show a definite melting point and so they pass rather sharply from solid to liquid state. 
There are various crystalline forms which are divided into seven crystal system or shapes. They are cubic, 
tetragonal, hexagonal, orthorhombic, monoclinic, trigonal and triclinic. The units that constitute these sys-
tems can be atoms, molecules or ions. Ionic and atomic crystals are hard and breakable with high melting  
points.

14.1.2 Amorphous solids

A rigid material whose structure lacks crystalline periodicity is called an amorphous solid. It means the pattern 
of its constituent atoms or molecules does not repeat periodically in three dimensions. Even amorphous 
materials have some short range order at the atomic length scale due to the nature of chemical bonding. They 
are considered supercooled liquids in which the molecules are arranged in a random manner somewhat as in 
the liquid state. Glass and plastic are the examples of amorphous solids. Unlike crystalline solids, amorphous 
solids do not have definite melting points.

 14.2 UniT CeLL

The smallest portion of a space lattice which can generate the complete crystal by repeating its own dimensions 
in various directions is called a unit cell. A unit cell is defined by the length of its edges and by the angles 
between them, as shown in Fig. 14.1.
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Figure 14.1

Vectors , and a b c
 

 are called lattice vectors that form primitive axes in the crystal structure. We also call 
them crystallographic axes, as the directions defined by these vectors are nothing but crystal axes. These vec-
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tors are used in translation vector and hence are called fundamental translation vectors. The magnitudes of 
vectors ,a b


 and c


 are called lattice constants that specify the distances of the bases along the crystal axes.

14.2.1 primitive Lattice Cell

The parallelepiped defined by primitive axes , ,a b c
 

 is called a primitive cell. A primitive cell is a type of 
unit cell which fills all the space under the action of suitable crystal translation operation. A primitive cell is 
a minimum volume unit cell, as shown in Fig. 14.2. There is a density of one lattice point per primitive cell. 
The volume of a primitive cell is defined by primitive axes , , as ( )a b c a b c¥ ◊

     .
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14.2.2 Wigner–seitz primitive cell

The smallest volume enclosed by the normal lines drawn from midpoints of the lines which connect lattice 

point to all nearby lattice points is called a Wigner–Seitz primitive cell. It is shown in Fig. 14.3.

 14.3 Types Of CrysTALs 

All crystals are classified into seven crystal systems on the basis of the shape of the unit cells. Bravais in 1948 
explained that there are fourteen different types of crystal lattices under the seven crystal systems. These 
seven types of crystal systems are tabulated in Table 14.1, and shown in Fig. 14.4.

Table 14.1

S.No. Name of System
Relative Between Number of Possible 

Lattices
Examples

Primitives Angles

1.

2.

3.

4.

5.

6.

7.

Cubic

Trigonal

Tetragonal

Hexagonal

Orthorhombic

Monoclinic

Triclinic

a = b = c

a = b = c

a = b π c
a = b π c
a π b π c

a π b π c

a π b π c

a = b = g = 90°

a = b = g π 90°

a = b = g = 90°

a = b = 90°, g = 120°

a = b = g = 90°

a = g = 90°, π b

a π b π g π 90°

3(P, F, I)

1(R)

2(P, I)

1(P)

4(P, C, F, I)

2(P, C)

1(P)

Nacl

CaSO4

NiSO4

Quartz

KNO3

FeSO4

CuSO4

P = Primitive, C = Base centered, I = Body Centered, F = Face centered, R = Rhombohedral

LO1
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Figure 14.4

14.3.1 Cubic System

In a cubic system, there are three types of lattices, namely simple cubic, body centered cubic and face centered 
cubic. In addition to these structures, other structures are also depicted in Fig. 14.4.

 (a) Simple Cubic: It contains lattice points at all eight corners of the unit cell. It is represented by sc.

 (b) Body Centered Cubic: It contains one additional lattice point at the centre of the body of the unit cell 
including at all eight corners. It is represented by bcc.

 (c) Face Centered Cubic: It contains lattice points at the centre of each face as well as at all eight 
corners. It is represented by fcc.

 14.4 TrAnsLATiOn VeCTOrs 

We take any lattice point O as an origin in a plane lattice shown 
in Fig. 14.5. Any other point in the two-dimensional lattice can 
be obtained by repeatedly translating the vectors anda b


. These 

vectors are known as basis vectors. Based on these basis vectors, 
we obtain the plane lattice by their repeated translation. The 
position vector of any other lattice point, i.e., translation vector, 
can be represented as

1 2T n a n b= +
 

LO2
B

O A

Figure 14.5
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where n1 and n2 are the integers which represent the number of lattice points along the directions OA and OB, 
respectively, and and a b


 are the primitives.  In case of three-dimensional crystal structures, the arrangement 

of points can be represented as 

1 2 3= + +
  

T n a n b n c

where , anda b c
 

 are the primitives along X, Y and Z axes, respectively.

 14.5 LATTiCe pLAnes 

A crystal lattice is made of a large number of parallel 
equidistant planes (Fig. 14.6) known as lattice planes 
and can be chosen in a number of ways, as shown in 
Fig. 14.6a, b, c and d.

 14.6 MiLLer indiCes

The integers which determine the orientation of a crystal 
plane in relation to the three crystallographic axes are 
called Miller indices. In order to find the Miller indices, 
the reciprocals of the intercepts of the plane on the 
axes in terms of lattice constants are reduced to the smallest integers in ratio. Miller indices are also called crystal 
indices.

Let us assume that a, b and c are the magnitudes of fundamental translation 
vectors along the three axes, respectively. Again we consider that ABC 
represents the plane whose Miller indices are to be obtained. Let OA, OB and 
OC are the intercepts made by this plane along the three axes (Fig. 14.7).

In order to find the Miller indices, we do the following.

 (a) We find the intercepts along the three axes.

 (b) We express these intercepts as multiple of lattice parameters.

 (c) We divide these intercepts by lattice parameters.

 (d) We take the reciprocal of these.

 (e) We clear these fractions by taking the LCM of the denominators and 
multiplying it. This gives the required Miller indices.

This can be understood in a better way in the following steps corresponding to the above steps a to e.

Directions x y z

Step (a) OA OB OC

Step (b) pa qb rc

Step (c) pa
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Figure 14.6
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14.6.1 Significance of Miller Indices

Same Miller indices are assigned to all parallel planes, for example, planes with coordinates x, y, z; 2x, 2y, 
2z; –x, –y, –z;  etc., are represented by the same Miller indices. The corresponding index for a plane, which 
is parallel to one coordinate axis, is zero. The corresponding index is negative for a plane that cuts an axis on 
the negative side of the origin.  The negative index is represented by putting a bar above the index.

14.6.2 Representation of Miller Indices

Let us consider a simple cubic system (a = b = g = 90° and a = b = c). For this system in Fig. 14.8a, b, c, d, 
e, f and g, we show Miller planes corresponding to (1̄ 0 0), (1 0 0), (0 1 0), (0 0 1), (1 1 0), (1 0 1) and (1 1 1) 
planes in a cubic crystal respectively.

(a)

C

G

H

B A B

C

A

D

E

F G

H

B

C

A

D

E

F G

H

B

C

A

D

E

F G

H

B

C

D

F

E H

G

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

(1 0 0) (1 0 0)

(0 0 1)

A

D

E

F G

H

B

C (1 1 0)

(1 0 1)

A

D

E

F G

H

B

C

(1 1 1)

(0 1 0)

(b) (c)

(d) (e)

(f) (g)

_

Figure 14.8



Crystal Structure 539

 ✦ The constituent particles of crystals have different types of charge distribution which provides different 
types of binding forces. The binding forces in most cases are electrostatic in nature but the distribution 
of electrons in various atoms are qualitatively different in different crystals. These binding forces are 
of different types, for example, ionic bond, covalent bond, metallic bond, molecular bond (or van 
der Waals bonds) and hydrogen bonds. Accordingly, the crystals are referred to as the ionic crystal, 
covalent crystal, metallic crystal, molecular crystal and hydrogen bonded crystal.

 ✦ Since the X-rays can penetrate solids and their wavelength (1 Å) is of the order of interplanar spacing, 
these rays can get strongly diffracted from different crystal planes. An analysis of the diffracted X-rays 
can provide the information about the structure of the crystal. The standard methods of X-ray diffraction 
include Bragg’s X-ray spectrometer, Laue method, rotating crystal method and powder method.

 ✦ Point defect is a discontinuity in a crystal lattice. It consists of either a missing atom or an ion that 
creates a vacancy in the lattice (often known as Schottky defect). If an extra atom or ion exists between 
two normal lattice points, it is said to create an interstitial position and if the missing atom or ion shifts 
to an interstitial position, then the vacancy is called Frenkel defect. Point defect occurs because of the 
absence of a matrix atom or the presence of an impurity atom at the matrix atom in the wrong place.

 ✦ The number of Schottky defects in binary ionic crystals like MgO and NaCl at ordinary temperature 

is given by exp
2

U
n N

kT

Ê ˆ= -Á ˜Ë ¯
 where N is the total number of cation-anion pairs and U is the average 

energy required to produce the Schottky defects.

 ✦ The number of Frenkel defects in crystals at ordinary temperature is given by 1/ 2( ) exp
2

i
i

E
n NN

kT

Ê ˆ= -Á ˜Ë ¯  

where N is the number of ions, Ni is the number of interstitial sites and Ei is the energy required to 
produce the vacancy.

solved eXamPles

ExamplE 1 A plane cuts intercepts 2a, 3b and c along the crystallographic axes in a crystal. Determine the 
Miller indices of plane.

Solution Intercepts are 2a, 3b and c.

Then from the law of rational indices, we have

 2 :3 : : :
a b c

a b c
h k l

=

or 
1 1 1

: : 2 :3:1
h k l

=

or 
1 1

: : : :1 3: 2 : 6
2 3

h k l = =

Therefore, the Miller indices of the plane are (3 2 6).

ExamplE 2 In a triclinic crystal, a lattice plane makes intercepts at a length a, 2b and –3c/2. Find the Miller 
indices of the plane.

Solution Intercepts are a, 2b and –3c/2.
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\ 
3

: 2 : : :
2

c a b c
a b

h k l

-
=

or 
1 1 1 3

: : 1: 2 :
2h k l

-
=

or 
1 2

: : 1: : 6 :3: 4
2 3

h k l
-

= = -

Therefore, the Miller indices of the given plane are (6 3 4
–
).

ExamplE 3 Deduce the Miller indices for planes in each of the following sets which intercept , anda b c
 

 at 
(i) 3a, 3b, 2c (ii) a, 2b, • (iii) a, b/2, c

Solution (i) Intercepts are 3a, 3b, 2c.

Then,

 3 :3 : 2 : :
a b c

a b c
h k l

=

or 
1 1 1

3:3:2 : :
h k l

=

or 
1 1 1

: : : :
3 3 2

h k l =

or h : k : l = 2 : 2 : 3

Therefore, the Miller indices are (2 2 3).

(ii) Intercepts are a, 2b, •.

Then,

 : 2 : : :
a b c

a b
h k l

• =

or 
1 1 1

: : 1: 2 :
h k l

= •

or 
1 1

: : 1: : 2 :1: 0
2

h k l = =
•

Therefore, the Millers indices are (2 1 0).

(iii) Intercepts are a, b/2, c.

Then,

 : : : :
2

b a b c
a c

h k l
=

or 
1 1 1 1

1: :1 : :
2 h k l

=

or h : k : l = 1 : 2 : 1

Therefore, the Miller indices are (1 2 1).

ExamplE 4 Calculate the spacing between (1 0 0) and (1 1 1) planes of a cubic system of lattice parameter a.

Solution Spacing between the planes of a cubic system of lattice parameter a.

2 2 2hkl

a
d

h k l
=

+ +  
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By using Eqs. (iii) and (iv), we have

or 

1 2
1 2

[ ]
[ ]

2 4

2

T T K nvk
T T

knv
K

l

l

-
= -

=  
(v)

The above equation represents the expression for thermal conductivity of a metal.

17.2.3 Wiedemann-Franz Law

As we have deduced the expressions for thermal conductivity K and the electrical conductivity s, now we are 
in the position to prove Wiedemann-Franz law which states that ratio of thermal conductivity K to the electrical 
conductivity s is proportional to the absolute temperature. From the expressions of K and s, we have

 

2 2

2

/2

2 6/6

K knv ne ne v

mv kTne v kT

l l l
s

s l

Ê ˆ
= = =Á ˜Ë ¯

 
2

3
K k

T
es

Ê ˆ= Á ˜Ë ¯
 (i)

or 
2

3
K k

T es

Ê ˆ= Á ˜Ë ¯
 (ii)

Putting the values of Boltzmann constant k and the charge of electron, we find 

2
23

8

19

1.38 10
3 2.23 10

1.6 10

K

Ts

-
-

-

Ê ˆ¥
= = ¥Á ˜¥Ë ¯

Thus,
K

Ts
 has the same values at all the temperatures for all the metals or the ratio K/s is directly proportional 

to absolute temperature. This is called Weidemann-Franz Law.

 17.3 LiMitations oF Lorentz–DruDe or Free eLeCtron theory

The limitations of free electron theory are listed below.

 (i) It does not explain why only some crystals are metallic.

 (ii) It does not explain why the metals prefer only certain structures.

 (iii)  In real situations, the electrical conductivity depends on the temperature. The free electron theory 
does not explain the temperature variation of electrical conductivity.

 (iv)  The paramagnetism of metals is nearly independent of temperature. This result could also not be 
explained by this theory.

 17.4 QuantuM theory oF Free eLeCtrons

As we know that the metal contains a large number of conduction electrons which are not completely free (but 
partially), though they are not bound to any particular atomic system. The forces between conduction electrons 

LO2

LO3
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and ion cores are neglected in the free electron approximation so that the electrons within the metal are treated 
as free. Further, the energy possessed by electron is kinetic, since the potential energy is taken to be zero.

Consider an electron of mass m confined in a box of length L. Under this situation, the Schröedinger wave 
equation becomes

2
2

2
E

m
y y- — =


 (i)

The solution of the above equation is

0 exp( )i k ry y= ◊
   (ii)

where k


 is the wave vector with the magnitude 
2

k
p

l
= .

It can be shown from Eq. (ii) that

2 2 2
2 2 2

2 2 2
; ;x y zk k k

x y z

y y y
y y y

∂ ∂ ∂
= - = - = -

∂ ∂ ∂

Then,

 

2 2 2
2

2 2 2

2 2 2( )x y z

x y z

k k k

y y y
y

y

∂ ∂ ∂
— = + +

∂ ∂ ∂

= - + +  (iii)

or =
2y = –k2y (iv)

By using Eqs. (i) and (iv), we have

2
2( )

2
k E

m
y y- ¥ - =



or 
2 2

( )
2

k
E k

m
=


 (v)

Now we can write the total energy E in terms of momentum p with the help of following relations.

Since, 

2 2 2 2

2 2

2 2 2 2

2 2

2
and

1 4

2 24

1

2 2 2

h
k

p

k h
E

m m

h h p p

m m mh

p
l

l

p

p l

l

= =

= =

= = =



or 
2

2

p
E

m
=  (vi)

Eq. (vi) represents the energy of a free particle (i.e., electron) and thus the energy is continuous. Here it may be 

mentioned that we have not considered the lattice periodicity and also assumed the constant potential inside the 

crystal to be zero. However, for cyclic boundary conditions, 
2 n

k
L

p
= , where L is the length of the cyclic chain 

(i.e., the solid). Therefore
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2 2

2 2

2

( )
2

( )
2

k
E n

m

n h
E n

mL

=

=



 
(vii)

The first three lower energy state wavefunctions are represented in 
Fig. 17.2. The distribution of the available electrons among the various 
allowed energy levels and the evaluation of the related quantities can 
be understood better along with the treatment of the free electron gas in 
three-dimensional box of length L.

17.4.1 Fermi energy

Consider that N free electrons are contained in a box at absolute temperature. At 
absolute zero all the energy levels below a certain level will be filled with electrons and 
the levels above this level will be empty. The energy level which divides the filled and 
empty levels is called ‘Fermi level’ and the corresponding energy of that level is known 
as ‘Fermi-energy’ EF. In ground state of the system of N free electrons, the occupied 
states may be represented as a point inside a sphere in k-space as shown in Fig. 17.3. 
The kx, ky and  kz are the components of kF along X, Y and Z axes, respectively. As per 
previous article, the energy of the electron is given by

2 2

2
k

k
E

m
=


 (i)

From the above relation it is clear that the energy increases as the square of distance from the origin of the k 
space coordinate system. All the electrons which lie on the same spherical shell of radius, kF, have the same 
energy, which is called Fermi Energy. It is given by 

2
2

2
F FE k

m
=



 
(ii)

Since, 

2

2

2

x x

y y

z z

k n
L

k n
L

k n
L

k n
L

p

p

p

p

2
=

=

=

=

where nx, ny and nz have the values 0, ±1, ±2, … . Therefore

2 4 6
0, , , ,xk

L L L

p p p
= ± ± ± º

ky and kz also have the same values. Suppose 
3

2

L

pÊ ˆ
Á ˜Ë ¯

 is the 

volume of one shell in k-space (Fig. 17.4). Then in a sphere of 

L = 3l/2

L = 2l/2

L = l/2

x = 0 x → x = L
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volume 34

3
Fk

p , the total number of energy states (or shells) will be

3

3

4

32
2

F

F

k

N

L

p

p
=

Ê ˆ
Á ˜Ë ¯  

(iii)

Here the factor 2 represents the two allowed values of spin quantum number 
1

2
sm = +  (spin up) and 

1

2
sm = -  

(spin down) for each allowed value of k.

If all of these energy shells are filled with electrons, then N will be equal to the number of electrons, i.e.,

3

3 3

3 2

4

32 or ( )
32

F

F

k
V

N N k V L

L

p

pp
= = =

Ê ˆ
Á ˜Ë ¯



 

(iv)

or 

1/3
2 2

3 3 3
orF F

N N
k k

V V

p pÊ ˆ
= = Á ˜Ë ¯  

(v)

From Eq. (v), it is clear that kF depends upon electron concentration 
N

V

Ê ˆ
Á ˜Ë ¯

 or in other wards kF depends upon 

number of electrons per unit volume but it does not depend on the mass of electrons. Now the Fermi energy is 

2
2

2
F FE k

m
=



The energy can be written as 

21

2
F FE mv=  (vii)

where vF is the velocity of electron in Fermi level, i.e., corresponding to Fermi energy. Then

2/3
2 2

21 3

2 2
F F

N
mv E

m V

pÈ ˘
= = Í ˙

Î ˚


\ 

1/3
23

F

N
v

m V

pÈ ˘
= Í ˙

Î ˚


 (viii)

17.4.2 effect of temperature on Fermi–Dirac Distribution

According to Fermi-Dirac distribution law, the most probable distribution is given by

 
( )

( )
( )

1E

g E
n E

e a b+=
+

 (i)

where 
1

and =FE

kT kT
a b

-
=  together with k as Boltzmann constant. It is often convenient to introduce the 

Fermi-distribution function f(E), which is defined as 
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( )

( ) 1
( )

( ) 1E

n E
f E

g E e a b+= =
+

With the values of a and b, this function can be written together with EF as the Fermi energy

( ) /

1
( )

1FE E kT
f E

e
-=

+
At absolute zero (T = 0)

– , if

if

F
F

F

E E
E E

kT

E E

-
= • <

= +• >

and the Fermi distribution function

–

1
( ) 1 for

1

1
0 for

1

F

F

f E E E
e

E E
e

•

+•

= = <

+

= = >

+

At any temperature T, and for E = EF,

or 

( ) 0

1 1 1
( )

1 111

1
( )

2

FE E kT
f E

ee

f E

-= = =
+++

=

The energy level corresponding to E = EF is called Fermi level. Since at E = EF, f(E) = 1/2, the Fermi level 
is defined as the energy level at which there is a 1/2 probability of finding an electron. It depends on the 
distribution of energy levels and the number of electrons available.

17.4.3 Density of states

It is defined as the number of energy states per unit energy range. It is denoted by the symbol D(E). In other words, 
the ‘density of states’ for electrons in a band gives the number of orbitals (or states) in a certain energy range. 
Hence, the number of filled (i.e., density of electron state) states having the energy in the range E and E + dE is 

N(E)dE = E(E) f (E)dE (i)

From the energy relation

2 2

2

k
E

m
=


 (ii)

and 
3

23

V
N k

p
=

we get 

2/3
2 2

2

N
E

m V

pÈ ˘3
= Í ˙

Î ˚


 (iii)

where E is total energy and N is the number of electrons. Therefore, from Eq. (iii), we have
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3/ 2 3/ 22

2 2 2

3 2

/4

N mE mE

V h

p

p

2È ˘ È ˘= =Í ˙ Í ˙Î ˚ Î ˚

or 3/ 2

3

8
(2 )

3

V
N mE

h

p
=  (iv)

By differentiating Eq. (iv) w.r.t. E, we get
1/2

3/ 2 1/ 2

3 3

8 3 8 (2 )
(2 )

23

dN V mV mE
m E

dE h h

p p
= =

or 
3/ 2

1/ 2

2 2

2
( )

2

dN V m
E

dE p

È ˘= Í ˙Î ˚

 (v)

The quantity 
dN

dE

Ê ˆ
Á ˜Ë ¯

 is frequency referred to as the density of available 

state D(E), which on multiplication with probability of occupation f (E) 
gives density of occupied state N(E), as shown in Fig. 17.5.

Thus, the number of electrons whose energies lie between E and E + dE 
is given by

1/ 2

3 ( ) /

( ) ( )

8
( ) (2 )

1FE E kT

dN
N E dE f E dE

dE

mV dE
N E dE mE

h e

p
-

=

=
+

17.4.4  average Kinetic energy of Free electron Gas at 0 K

All the electrons have energy less than the Fermi energy EF at 0 K, i.e., E < EF. With this condition, the Fermi-
Dirac distribution function becomes

( ) /

1
( ) 1

1FE E kT
f E

e
-= =

+

If we consider that the average energy of an electron is eE . Since f (E)= 1, we can write

0 0

1 1
( ) ( )

F FE E

e

dN
E EN E dE E f E dE

N N dE
= =Ú Ú

Substituting the value of 
dN

dE
 from Eq. (v) and f (E) as 1, in the above equation, we get

1/ 2 3/ 2

3 0

5/ 21/ 2

3

1 8
(2 )

1 8 2
(2 )

5

FE

e

e F

mV
E m E dE

N h

mV
E m E

N h

p

p

Ê ˆ= Á ˜Ë ¯

Ê ˆ= Á ˜Ë ¯

Ú

Now the above relation with the value of N substituted from Eq. (iv) reads

3

5
e FE E=

f(E)

N(E)

E
F

E

Figure 17.5
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ExamplE 2 Fermi energy of a given substance is 7.9 eV. What is the average energy and speed of electron in this 
substance at 0 K?

Solution Given EF = 7.9 eV

0

0

2 0
0

19

31

3
Average energy

5

3
7.9 eV

5

= 4.74 eV

21
and, or

2

2 4.74 1.6 10
or /

9.1 10

FE E

E

E
mv E v

m

v
-

-

=

= ¥

= =

¥ ¥ ¥
= = ¥

¥
6

1.29 10 m sec

ExamplE 3 There are 2.5 ¥ 1028 free electrons per cubic meter of sodium. Calculate the Fermi energy and 
Fermi velocity.

Solution Given 282.5 10
N

V
= ¥

Formula used is

2/32
2 2

2/32
2

2

34 2
2 28 2/3

2 31

19

19

1/3
2

34

1
3

2 2

or 3
8

(6.62 10 )
[3 (3.14) 2.5 10 ]

8 (3.14) 9.1 10

4.99 10 J

5.0 10 J

or 3.12 eV

and Fermi velocity 3
2

6.62 10

2 3

F F

F

F

F

F

N
E mv

m V

h N
E

Vm

E

E

h N
v

m V

p

p
p

p
p

-

-

-

-

-

Ê ˆ= = ◊Á ˜Ë ¯

Ê ˆ= ◊Á ˜Ë ¯

¥
= ¥ ¥ ¥

¥ ¥ ¥

= ¥

= ¥

=

È ˘= ◊Í ˙Î ˚

¥
=

¥



2 28 1/3

31
(3 (3.14) 2.5 10 )

.14 9.1 10

/

- ¥ ¥ ¥
¥ ¥

= 6
1.05 10 m sec

ExamplE 4 The density of copper is 8940 kg/m3 and atomic energy weight is 63.55. Determine the Fermi 
energy of copper. Also obtain the average energy of free electrons of copper at 0 K.

Solution Given atomic weight = 63.55 kg and density of copper = 8940 kg/m3.

Volume of 1 kg mole of copper, 
2

63.55 kg

8940 kg/m
V =

Number of atoms per kg atom = 6.02 ¥ 1026

or 
266.02 10 8940

63.55

N

V

¥ ¥
=
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Fermi energy 
2/32

2 2

2/32
2

2

2/3
34 2 26

2

2 31

19

1
3

2 2

3
8

(6.62 10 ) 6.02 10 8940
3 (3.14)

63.558 (3.14) 9.1 10

11.261 10 J

7.038 eV

F F

F

N
E mv

m V

h N

Vm

E

p

p
p

-

-

-

È ˘= = Í ˙Î ˚

È ˘= Í ˙Î ˚

È ˘¥ ¥ ¥
= ¥ ¥Í ˙

Î ˚¥ ¥ ¥

= ¥

=



Average energy
0

3 3
7.038 eV

5 5

=

FE E= = ¥

4.22 eV

ExamplE 5 Consider silver in the metallic state with one free electron per atom. Calculate the Fermi energy. 
Given that density of silver is 10.5 g/cm3 and atomic weight is 108.

Solution Volume of 1 g mole of silver, 3

108 g

10.5 g/cm
V =  and number of atoms per g atom = 6.02 ¥ 1023.

23

22 3

28 3

6.2 10 10.5

108

5.85 10 per cm

5.85 10 per cm

N

V

¥ ¥
=

= ¥

= ¥

Fermi energy 
2/32

2

2

34 2
2 28 2/3

2 31

19

3
8

(6.62 10 )
[3 (3.14) 5.85 10 ]

8 (3.14) 9.1 10

8.799 10 J

= 5.499 eV

=

F

h N
E

Vm
p

p
-

-

-

È ˘= ◊Í ˙Î ˚

¥
= ¥ ¥ ¥

¥ ¥ ¥

= ¥

5.5 eV

ExamplE 6 Aluminium metal crystallises in f.c.c. structure. If each atom contributes single electron as free 
electron and the lattice constant a is 4.0 Å, treating conduction electron as free electron Fermi gas, find (i) 
Fermi energy (EF) and Fermi vector (kF) and (ii) total kinetic energy of free electron gas per unit volume at 

0 K.

Solution In f.c.c. lattice number of electrons per unit cell will be (N) = 4 and volume of a unit cell is a3 = 64 ¥ 10–30 m3

and 
30

28

4

64 10

6.25 10

N

V -=
¥

= ¥
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Fermi energy 
2/32

2

2

34 2
2 28 2/3

2 31

19

3
8

(6.62 10 )
[3 (3.14) 6.25 10 ]

8 (3.14) 9.1 10

9.2 10 J

= 5.75 eV

F

h N
E

Vm
p

p
-

-

-

È ˘= ◊Í ˙Î ˚

¥
= ¥ ¥ ¥

¥ ¥ ¥

= ¥

Fermi vector   

1/3
2 2 28 1/3

10

3 [3 (3.14) 6.25 10 ]

1.23 10 per meter

F

N
k

V
p

È ˘= ◊ = ¥ ¥ ¥Í ˙Î ˚

= ¥

Total kinetic energy of free electrons per unit volume at 0 K 

28

(Average energy per electron at 0 K)

(number of electrons per unit volume)

3 3
= 5.75 6.25 10 eV

5 5

=

F

N
E

V

=
¥

¥ = ¥ ¥ ¥

28
21.56 10 eV

ExamplE 7 Calculate the drift velocity of electrons in an aluminium wire of diameter 0.9 mm carrying 

current of 6 A. Assume that 4.5 ¥ 1028 electrons/m3 are available for conduction.

Solution Given I = 6 A, n = 4.5 ¥ 1028 electrons/m3 and radius 
3

40.9 10
4.5 10 m

2 2

d
r

-
-¥

= = = ¥

Current density 
4 2

4 2

6 2

6.0

(4.5 10 )

6.0

3.14 (4.5 10 )

9.44 10 A/m

I
J

A p -

-

= =
¥ ¥

=
¥ ¥

= ¥

and drift velocity 
6

28 19

9.44 10

4.5 10 1.6 10

/

d

J
v

ne -
¥

= =
¥ ¥ ¥

= 3
1.311 10 m sec

ExamplE 8 The density of Cu is 8.92 ¥ 103 kg/m3 and its atomic weight is 63.5. Determine the current 
density if the current of 5.0 A is maintained in Cu wire of radius 0.7 mm. Assuming that only one electron of 
an atom takes part in conduction. Also calculate the drift velocity of electrons.

Solution Given

3 3

3

28 3

30 3

Atomic weight = 63.5 kg,

Density of copper 8.92 10 kg/m , 5 A

Radius = 0.7 10 m

6.02 10 8.92 10
Radio

63.5

8.456 10 electrons/m

I

N

V

-

= ¥ =

¥

¥ ¥ ¥
=

= ¥
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L e a r n i n g  O b j e c t i v e s

After reading this chapter you will be able to

LO 1 Understand Kronig-Penney model, 

energy E versus k diagram and one- and 

two-dimensional Brillouin zones

LO 2 Explain effective mass of an electron 

and deviation of electron behaviour in 

crystal lattice

LO 3 Differentiate between Insulators, 

n-type, p-type semiconductors and 

conductors (metals)

LO 4 Explain electron configuration in 

conduction band, hole concentration 

in valence band, Fermi level of intrinsic 

and extrinsic semiconductor

LO 5 Illustrate Hall effect, Hall voltage and 

Hall coefficient

LO 6 Learn simple model of photoconductor 

and gain factor

LO 7 Discuss effects of traps, applications of 

photoconductivity

A solid contains an enormous number of atoms packed closely together. When N atoms of the solid are 

well separated, then these atoms lead to N-fold degenerate levels of the solid. As the atoms approach 

one another to form a solid, i.e., their separation reduces, a continuously increasing interaction occurs 

between them. This causes each of the levels to split into N distinct levels. It is the separation distance 

(say r) which specifies the amount of overlap that causes the splitting. Since a solid contains about 1023 

atoms per mole, i.e., N is very large, the splitted energy levels become so numerous and close together 

that they form an almost continuous energy band.

The amount of splitting is different for different energy levels. For example, the lower energy levels are 

found to spread or split less than the higher levels. It means the lowest levels remain almost unsplit. The 

reason is that the electrons in lower levels are the ones which are in inner subshells of the atoms. So they 

are not significantly influenced by the presence of nearby atoms. Since the potential barriers between the 

atoms are for them relatively high and wide, these electrons are localised in particular atoms, even when 

r is small. However, the electrons in the higher levels are the valence electrons and are not localised at all 

Band Theory of Solids and 
Photoconductivity

Introduction

18
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 18.1  KrONiG-PENNEy mODEl

Free electron model ignores the effects those arise when the electrons interact with crystal lattice. However, 
now we consider this by making some general remarks about the effect of the periodic variation in the potential. 
Due to this periodicity in potential for an infinitely long lattice, the wave function does not remain sinusoidal 
travelling waves of constant amplitude but now they include the lattice periodicity in their amplitudes, and 
electrons may be scattered by the lattice. When the  deBroglie wavelength of the electron corresponds to a 
periodicity in the spacing of the ions, the electron interacts strongly with the lattice. This situation is the same 
as an electromagnetic wave suffers Bragg’s reflection, when the Bragg’s condition is satisfied.

LO1

for small r but they become part of the whole system. From the quantum point of view, the wave functions 

of the valence electrons overlap and the overlapping of their  wave functions results in splitting or spreading 

of their energy levels.

The band formation of the higher energy levels of 

sodium, whose ground state atomic configuration 

is 1s2 2s2 2p6 3s1, is shown in Fig. 18.1. In the figure, 

the dashed and vertical line indicates the observed 

interatomic separation in the solid sodium. It is clear 

from the figure that the bands overlap when the atomic 

separation decreases. This figure also shows that the 

allowed band corresponding to inner subshells, for 

example 2p in sodium, are extremely narrow and 

does not begin to split until the interatomic distance 

r becomes less than the value actually found in the 

crystal. As we move towards the higher energy states, 

the energy of the electrons become larger and also the 

region in which they can move becomes wider. Since 

they are also affected more by the nearby ions, it is 

seen that the bands become progressively wider for the 

outer  occupied subshells and also for the  unoccupied 

subshells of the atoms in its ground state. Therefore, with the increase of energy the successive allowed 

bands become wider and overlap each other in energy.

It is clear from the above discussion that the energy bands in a solid correspond to energy levels in an 

atom. Therefore, an electron in a solid can occupy only energy that falls within these energy bands. 

The overlapping of the bands depends on the structure of the solid. If the bands do not overlap, then 

the intervals between them represents energies which the electrons in the solid cannot occupy. These 

intervals are called  forbidden bands or energy gaps. However, if the adjacent bands in the solid overlap, 

then the electrons possess a continuous distribution of allowed energies.

Figure 18.1
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In order to find the allowed energies of electrons in solids, we consider the effect of formation of a solid 
when the individual constituent atoms are brought together. We solve the Schröedinger equation for periodic 
potential seen by an electron in a crystal lattice. We also consider that the periodic potential is a succession of 
rectangular wells and barriers. The solution of Schröedinger equation is a sinusoidal wave in certain energy 
ranges, i.e., allowed states, and real decaying exponential wave in the other ranges, i.e., the forbidden bands. 
For this purpose, here we present only qualitative approach.

It is found that the potential is not constant but varies periodically. The effect of periodicity is to change 
the free particle travelling wave eigen function. Therefore, the travelling wave eigen function has a varying 
amplitude which changes with the period of the lattice. If we consider that the space periodicity is a (Fig. 
18.2), then according to Bloch, the eigen function for one-dimensional system has the form

y(x) = uk(x)eikx

V(x)

(a + b)

a

a–b

V
0

0

Figure 18.2

As is clear, this is different from the free travelling wave function y(x) = Aeikx ◊ uk(x) is the periodic function 
with the periodicity a of the periodic potential, i.e., 

uk(x) = uk(x + a)

In general,

uk(x) = uk(x + na)

where n is an integer. Hence, with the effect of periodicity, the complete wave function is

y(x, t) = uk(x)ei(kx – wt) (i)

In the above equation, the exponential term indicates a wave of wavelength 
2

k

p
l =  which travels along +x 

direction if k is positive and it moves along –x direction if the value of k is negative.

The exact form of the function uk (x) depends on the particular potential assumed and the value of k.

In 1930, Kronig and Penney proposed a one-dimensional model for the shape of rectangular potential wells 
and barriers having the lattice periodicity, as shown in Fig. 18.2. Each well represents an approximation to 
the potential produced by one ion. In the region such as 0 < x < a, the potential energy is assumed to be zero 
while in the region –b < x < 0 or a < x < (a + b), the potential energy is taken as V0. The relevant Schröedinger 
equations for these two regions are
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2

2 2

2
0

d m
E

dx

y
y

È ˘+ =Í ˙Î ˚

 (ii) [0 < x < a ]

2

02 2

2
( ) 0

d m
E V

dx

y
y

È ˘+ - =Í ˙Î ˚

 (iii) [–b < x < 0 ]

The electron of not too high energy is practically 
bound within one of the wells that are deep and widely 
spaced. So the lower energy eigen values are those of 
a single well. However, for the wells those are closer 
together the eigen function can penetrate the potential 
barriers more easily. Because of this, spreading of 
previously single energy level into a band of energy 
levels takes place. The band becomes wider with the 
decrease in the separation of the wells. Under the limit 
of zero barrier thickness, we obtain an infinitely wide 
single well in which all energies are allowed. So the 
present case is reduced to the free electron model. The 
comparison between the allowed energies of a single 
well and an array of wells (Kronig-Penney model) is 
shown in the Fig. 18.3. In this figure, we have assumed 
b = a/16 and the well strength as 2mV0a

2/2 = 121. It 
is clear from the figure that each band corresponds to 
a single energy level of the single well. The forbidden 
bands appear even for energies E > V0.

Here we will solve the Schröedinger wave equation 
for electron for Kronig-Penney potential under the 

condition that and
d

dx

y
y  are continuous at the boundaries of the well. A complicated expression for the 

allowed energies in terms of k shows that gaps in energy are obtained at values such that

2 3
, , ,k

a a a

p p p
= ± ± ± º  (iv)

The solution of the Schröedinger wave equation for free-electrons results in the energy values given by

2 2 2 2

2 28

h k k
E

mmp
= =


 (v)

18.1.1 Energy E versus Wave Number k Diagram

From Eq. (v), it is clear that the relation between E and k is parabolic. The parabolic relation between E and k, 
valid in case of free electrons, is therefore, interrupted at different values of k, as shown in Fig. 18.4. It means 
the energies corresponding to the values of k given by Eq. (iv) are not permitted for electrons in the crystal. 
Thus, the energies of electrons are divided into forbidden and allowed bands (Fig. 18.4).

0.06

0.2

0.5

0.9

2V
0

V
0

0

Energy

Single Potential Well Periodic Array of Wells

Figure 18.3
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Figure 18.4

The occurrence of the gaps can be understood on the basis of Bragg’s condition for the diffraction, given as

2a sin q = nl n =1, 2, 3, ….. (vi)

where a is spacing between the ions of the lattice and q is the angle of incidence.

Eq. (vi) can be written as

2a = nl (for q = 90º)

or 
2

2a n
k

p
=

or 
n

k
a

p
=  (vii)

or 
2 3

, , ,k
a a a

p p p
= ± ± ± º

We have put ± signs because the incident wave can travel along +x-axis as well as along –x-axis. At all these 
values of k the gaps in energy occur, as shown in Fig. 18.4.

The waves corresponding to values of k satisfying the Bragg’s condition are reflected and resulted in standing 
waves. On each subsequent Bragg reflection, the direction in which the wave is travelling is reversed again. 
The eigen function of incident and corresponding reflected waves for k n

a

p
= ±  are therefore ei(p/a)x and 

e–i(p/a)x. These two eigen functions can be combined in two different ways to give total eigen function

y1 = ei(p/a)x + e–i(p/a)x = cos(p/a)x

y2 = ei(p/a)x + e–i(p/a)x = sin(p/a)x

or y1 µ cos(p/a)x (viii)

and y2 µ sin(p/a)x (ix)
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Hence, the two standing waves are obtained. The probability density curves for these two stationary waves, 
i.e., |y1|

2 and |y2|
2, are shown in Fig. 18.5. From this figure and Eq. (viii) it is clear that the value of |y1|

2 is 
maximum at the positions of positive ions (i.e., x = 0, ±a, ±2a,...). The value of |y2|

2 is maximum in between 
the position of positive ions. From Fig. 18.2, it is evident that the potential energy of an electron is maximum 
between the ions and minimum at the positions of the ions. So an electron can have two different values of 
energies, i.e., E1 and E2 for k

a

p
=  corresponding to the two standing waves y1 and y2. Hence, no electron 

can have any energy between E1 and E2. This phenomenon creates a difference in energy (E1 ~ E2) which is 

known as energy gap.

–3a –2a –a 2a 3aa0

�Y�2

�Y
1
�2 �Y

2
�2

Figure 18.5

 18.2 ONE-aND TWO-DimENsiONal BrillOuiN ZONEs

In Kronig-Penney model, we have seen that the discontinuities in energy occurs when the wave number 
k satisfies the condition k = np/a, where n takes the values ±1, ±2, ±3,... etc. The graph between the total 
energy E and wave number k is shown in Fig. 18.4. It is clear from the figure that an electron has allowed 
energy values in the region between –p/a to +p/a. This region is called the first Brillouin zone. As discussed 
earlier, there is a discontinuity of gap in the energy values after this allowed energy value. This gap is called 
forbidden gap or forbidden zone. Again there is another allowed energy zone, which is observed after this 
forbidden gap and is extended from –p /a to –2p /a and p/a to 2p /a. This zone is called second Brillouin zone. 
Similarly, the other higher order Brillouin zones can be defined.

The first two Brillouin zones in one-dimensional case are shown in Fig. 18.6. We can extend the concept 
of the Brillouin zones to two-dimension by considering that the electron is moving in the two-dimensional 
square lattice. In this case, the wave number k has the two components, i.e., along the x-axis and y-axis. 
Let us represent them as kx and ky, respectively. The two-dimensional Brillouin zones are shown in Fig. 
18.7. It can be seen that kx = ky = ±p/a limits the first Brillouin zone. In the figure, the first Brillouin zone 
is represented by a square passing through the points A, B, C and D. The second Brillouin zone for a two-
dimensional lattice is represented by a square passing through E, F, G and H.

–2p/a–3p/a

First Brillouin Zone

K

Second Brillouin Zone

3p/a–p/a p/a 2p/a

Figure 18.6

LO1
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It is clear that the boundary for the second zone is 
given by kx=±2p/a and ky=±2p/a. Thus the region 
between the squares ABCD and EFGH is called the 
second Brillouin zone.

 18.3  EffEcTivE mass Of 

aN ElEcTrON

The electrons in a crystal are not completely free 
but interact with the crystal lattice. As a result, their 
behaviour towards external forces is different from 
that of a free electron. The deviation of electron 
behaviour in the crystal lattice from the free electron 
behaviour can be taken into account simply by 
considering the electron to have an altered value of 
mass called the ‘effective mass’ m* rather than its 
mass m* in free space, which is different from the 
mass m of the electron in free space. The effective 
mass m* depends on the nature of crystal lattice and varies with the direction of motion of the free electron 
in the lattice.

Suppose an electron is moving along the x-axis in a crystal in the presence of an external electric field E¢. 
So it experiences a force eE¢. If the electron gains velocity v over a distance dx in time dt under the action of 
this force, then

Work done = dE=eE¢ dx= eE¢ v dt dx
v

dt

È ˘=Í ˙Î ˚


As we know that the velocity v of a particle (electron) is the same as the ‘group velocity’ 
g

d
v

dk

wÊ ˆ=Á ˜Ë ¯
 of the 

de Broglie waves associated with the particle (v = vg). Thus, we can write the work done in terms of vg as

dE = eE¢ vg dt (i)

According to Einstein’s de Broglie relation

2

h
E hn w

p
= =  [ w = 2pn]

By differentiating it, we get

2 2

h h d
dE d dk

dk

w
w

p p
= =  (ii)

 
g

d
v

dk

w
=

 
2

g

h
dE v dk

p
=  (iii)

LO2

Figure 18.7
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By comparing Eq. (iii) with Eq. (i), we get

2
g

h
eE dt v dk

p
=¢

or 
2dk

eE
dt h

p
= ¢  (iv)

Let us write the group velocity vg in terms of energy E from Eq. (ii)

2
g

d dE
v

dk h dk

w p
= =  (v)

By differentiating the above equation w.r.t. time, we get

2 2

2

2 2

( )

gdv d E d E dk

dt h dtdk h dtdk

p p
= =

or 
2

2

2 2

( )

gdv d E
eE

dt h hdk

p p
= ¢    (By using Eq. (iv)) (vi)

Employing vg = v again, this can be written as

2 2

2 2

4dv d E
eE

dt h dk

pÊ ˆ
= ¢Á ˜Ë ¯

 (vii)

This equation connects the force eE¢ on the electron with the acceleration 
dv

dt
 through the proportionality 

factor 
2 2

2 2

4 d E

h dk

pÊ ˆ
Á ˜Ë ¯

.

Since F = ma, a = F/m (viii)

A comparison of Eq. (viii) with Eq. (vii) yields

2 2

* 2 2

1 4 d E

m h dk

p
=

The quantity 
*

1

m
 is the reciprocal of the effective mass of the electron in the crystal lattice.

 18.4  DisTiNcTiON BETWEEN iNsulaTOrs, sEmicONDucTOrs aND 

cONDucTOrs (mETals)

The formation of bands in solids has already been discussed and it was shown that there is an energy gap, 
called forbidden band, representing energies which the electrons cannot occupy. Based on this energy gap 
and the conduction, the solids are classified into different categories named as insulators, semiconductors 
and conductors.
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18.4.1 insulators

For these types of solids, the band formation is like the one shown in Fig. 18.8a. In this case, the forbidden gap 
between the highest filled band (valence band) and the lowest empty band (conduction band) is very wide; it 
is about 3 eV to 6 eV. It is seen that a very few electrons from the filled band reach the empty band, even if 
we thermally excite them or apply an electric field to them. Moreover, Pauli exclusion principle restricts the 
electrons for moving about in the filled band. For this reason, a free electron current cannot be obtained and 
the solids of this type are poor conductors of electricity. This class of solid is known as insulators. Diamond, 
quartz, and most covalent and ionic solids like ZnO and AgCl are the examples of insulators.
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1s 
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 Figure 18.8a Figure 18.8b

18.4.2 semiconductors

For these types of solids the band formation is like the one shown in Fig. 18.8b. In this case, the forbidden gap 
between the highest filled band (valence band) and the lowest empty band (conduction band) is very narrow; 
it is about 0.1 eV to 1 eV. Under this situation we can easily move the electrons from the highest filled band 
to the empty band. This can be achieved by thermal excitation or also by applying an electric field. For this 
reason, a free electron current can be obtained as a few electrons are available in the empty band. This class 
of solids is known as semiconductors. Silicon and germanium are the examples of semiconductors.

In semiconductors, there also exists another mechanism that causes the generation of electric current. 
Actually there are vacancies or the empty places left behind when the electron moves, which remain near the 
top of the uppermost filled band. These vacancies are called holes. The holes behave as positive electrons 
and can contribute to the generation of electric current. This is possible as the electron below the hole may 
gain enough energy to jump and occupy the hole due to the applied electric field. With such successive jumps 
of the electrons, the hole moves towards the lower energy state and contribute to the generation of electric 
current.
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The semiconductors are mainly of two types, defined below.

18.4.2.1 n-type Semiconductors

The n-type semiconductors are the ones in which the electron conduction (negative) exceeds the hole 
conduction (positive). In such semiconductors, the donor impurity predominates. This can be understood if 
we introduce a small amount of phosphorous (P) or arsenic (As), i.e., an element of fifth group of the periodic 
table, as an impurity into a crystal of silicon (Si) or germanium (Ge). This addition of P or As means replacing 
an atom of Si or Ge at a lattice site by an atom of the impurity. Atoms of fifth group elements have five valence 
electrons whereas Si or Ge has four valence electrons. So four electrons of P or As form covalent bonds with 
the electrons of the atoms of Si or Ge. However, the fifth electron remains only very weakly bound to the 
P or As atom by electrostatic forces and this cannot be accommodated in the already filled original valence 
band. So, it occupies a discrete energy level which is just below the conduction band (with only a few tenths 
of an eV). Hence these extra electrons jump easily into the conduction band and contribute to the electric 
conductivity in addition to the electron hole pairs produced by thermal excitation of the pure semiconductor. 
This way the number of electrons sits more than holes to serve as charge carriers.

18.4.2.2 p-type Semiconductors

The p-type semiconductors are the one in which the hole conduction (positive) exceeds the electron 
conduction (negative). In such semiconductors, the acceptor impurity predominates. This can be understood 
if we introduce a small amount of Al, Ga or In, i.e., an element of third group of the periodic table, as an 
impurity into a crystal of silicon (Si) or germanium (Ge). Atoms of third group elements have three valence 
electrons whereas Si or Ge has four valence electrons. So three electrons of Al or Ga form covalent bonds with 
the electrons of the atoms of Si or Ge. However, the fourth available electron of the semiconductor lacks an 
electron with which it can form a bond. This is equivalent to as if a vacancy or hole has been created at the site 
of the impurity atom. Hence, the impurity atoms introduce vacant discrete energy levels very near the top of 
completely filled valence band of Si or 
Ge. So these extra holes move from an 
impurity atom. These holes behave as 
positive charge carriers and are available 
in excess. Since the crystals of this type 
have an excess of positive charge carriers, 
they are called positive semiconductors 
or p-type semiconductors.

18.4.3 conductors or metals

For these types of solids, the band 
formation is like the one shown in  
Fig. 18.8c. In this case, the valence 
band is either partially filled or the next 
allowed empty band overlaps with the 
filled band. In both the cases, there are 
unoccupied states for electrons in the 
uppermost band. So these electrons are 
available to generate the current. This 
class of solids is known as conductors. 
The conductors offer a low resistance to 

Figure 18.8c
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18.5.3 intrinsic concentration of charge carriers

Combining Eqs. (vi) and (vii), we get the following expression for the product of electron-hole concentration

3
( )/3/2

2

/3

2
4 ( ) V C

g

E E kT
C h h

E kT

C h

kT
n n np mm e

h

n n AT e

p -

-

È ˘= = Í ˙Î ˚

=   (viii)

where Eg = EC – EV is the width of forbidden energy gap between conduction and valence bands and 

3 3
3/2

6

32
( )h

k
A mm

h

p
=  is a constant. In most of the cases, nC is written as n and nhas p only.

Eq. (viii) shows that the product of holes and electron densities depends on the temperature T and the 
forbidden energy gap Eg, but is independent of the Fermi level EF. Thus the product of electron and hole 
concentrations, for a given material, is constant at a given temperature. If an impurity is added to increase 
n, there will be a corresponding decrease in p such that the product np remains a constant. Since for an 
intrinsic semiconductor, n = p = ni, we arrive at an important relationship, called the law of action

/2 3 gE kT

inp n AT e
-= =   (ix)

where ni is called the intrinsic density of either carrier. Equation (ix) is true for a semiconductor regardless 
of donor or acceptor concentrations.

18.5.4 Energy Band Diagram and fermi level

In an intrinsic semiconductor, the electrons and holes are always generated in pairs, i.e., n = p = ni. Substituting 
the values of n and p from Eqs. (vi) and (vii) of the previous sections, we get
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This shows that the Fermi level EF lies exactly in the centre of 
the forbidden energy gap Eg as depicted in Fig. 18.9. The Fermi 
level can also be defined as the energy level at which there is a 0.5 
probability of finding an electron. It depends on the distribution of 
energy levels and the number of electrons available.

 18.6 ExTriNsic sEmicONDucTOr

The conductivity of an intrinsic semiconductor can be increased significantly by adding certain impurities to 
it. By doing so, we get impurity semiconductor which is also known as extrinsic semiconductor. In extrinsic 
semiconductors, current carriers are introduced by donor and acceptor impurities with locked energy levels 
near the top or bottom of the forbidden gap.

18.6.1 Energy Band Diagram and fermi level

(i) n-type Extrinsic Semiconductor

When a small amount of pentavalent impurity is added to the crystal, it creates extra electrons without adding 
any new holes. This impurity introduces new energy levels into the energy band picture. The location of these 
new levels is slightly below the bottom of the conduction band for intrinsic semiconductor. The width of the 
gap for germanium was previously stated as 0.72 eV. The energy required to move an electron from a donor 
impurity into the conduction band is of the order of 0.01 eV, and since at normal ambient temperature the 
thermal energy is considered to be about 0.02 eV, it is concluded that almost all the electrons are detached 
from the donor atoms and have conduction band energies. In the case of silicon doped with donor impurities, 
the energy required to move an electron from donor impurity into the conduction band is of the order of 
0.05 eV. The energy band diagram for an n-type semiconductor is shown in Fig. 18.10. Here Eg represents the 
energy level corresponding to donor impurities.

Figure 18.9
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In intrinsic semiconductor, Fermi level lies in the middle of the 
forbidden energy Eg indicating equal concentrations of free electrons 
and holes. When a donor type impurity is added to the crystal, then 
if we assume that all the donor atoms are ionised, the donor electrons 
will occupy the states near the bottom of the conduction band. Hence, 
it will be more difficult for the electrons from the valence band to cross 
the energy gap by thermal agitation. Consequently, the number of 
holes of the valence band is decreased. Since Fermi level is a measure 
of the probability of occupancy of the allowed energy states, EF for 
n-type semiconductors must move closer to the conduction band, as shown in Fig. 18.10. At usual temperatures 
all the donor levels will be fully activated and the donor atoms will be ionised. It means the density of electrons in 
the conduction band will be approximately equal to the density of donor atoms, i.e., n ª Nd (Nd being the density 
of donor atoms). Then from Eq. (vi), we have
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It shows that the Fermi level lies below the bottom of the conduction band, as shown in Fig. 18.10.

(ii) p-type Extrinsic Semiconductor

When an acceptor-type impurity is added, it also modifies 
the energy level diagram of semiconductor and makes the 
conduction easier. The presence of impurity creates new 
energy levels which are in the gap in the neighbourhood of 
the top of valence band of energies, as shown in Fig. 18.11. 
Ambient temperature results in ionisation of most acceptor 
atoms and thus an apparent movement of holes takes place 
from the acceptor levels to the valence band. The energies 
for holes are highest near the valence bond and decrease 
vertically upward in the energy level diagram. Alternatively, one may say that electrons are accepted by the 
acceptors and these electrons are supplied from the valence band, thus leaving a preponderance of holes in 
the valence band.

Figure 18.11

Figure 18.10
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The energy band diagram for a p-type semiconductor is shown in Fig. 18.11 where EA represents the energy 
level corresponding to the acceptor impurity. When an intrinsic semiconductor is doped with acceptor type 
impurity, the concentration of holes in the valence band is more than the concentration of electrons in the 
conduction band and the Fermi level shifts towards the valence band, as shown in Fig. 18.11. The acceptor 
level lies immediately above the Fermi level.

If we assume that there are only acceptor atoms present and that these are all ionised, we have p = Na. Then 
from Eq. (vii), we get
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It shows that the Fermi level lies above the top of valence band, as shown in Fig. 18.11.

18.6.2 Effect of Temperature

Let us see what happens if we increase the temperature of an n-type semiconductor. Since all the donors have 
already donated their free electrons at room temperature, the additional thermal energy will only increase the 
generation of electron-hole pairs. Thus the concentration of minority charge carriers increases. A temperature 
is ultimately reached when the number of covalent bonds broken is very large such that the number of holes 
and electrons is almost equal. The extrinsic semiconductor then behaves like an intrinsic semiconductor, 
although its conductivity is higher. This critical temperature is 85oC for germanium and 20oC for silicon. The 
same arrangement can be put forward for the p-type semiconductor. Thus with an increase in the temperature 
of an extrinsic (impurity) semiconductor, it behaves almost intrinsically.

 18.7 Hall EffEcT

If a current carrying conductor is placed in a transverse magnetic field, a potential is developed in the 
conductor in the direction perpendicular to both the current and magnetic field. This phenomenon is known 
as Hall effect. It was discovered by Hall in 1879.

Let us consider a rectangular strip carrying current along x-axis (with electron flow towards x-axis) and 
magnetic field of strength B is applied along z-axis, as shown in Fig. 18.12. The force on electrons would be 
exerted due to the effect of magnetic field in negative y-direction. Therefore, the face MN collects a negative 
charge and the face PQ collects positive ions. This separation of charges sets up an electrostatic field inside 
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 ✦ The presence of impurities produces discrete energy levels in the forbidden gap. They are known as 
traps. It means the trap is an energy level in the forbidden energy gap of specimen, which is capable of 
capturing either an electron or a hole. The captured electron or hole may be re-emitted at any time and 
can further move to another trap.

solVeD eXamPles

ExamplE 1 Consider two-dimensional square lattice of side 3.0 Å. At what electron momentum values do the 
sides of first Brillouin zone appear? What is the energy of free electron with this momentum?

Solution Given a = 3.0 ¥ 10–10 m.

Formula used for momentum of electron

p = k

For first Brillouin zone k
a

p
= ± , then
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= 4.155 eV

ExamplE 2 Find the position of Fermi level EF at room temperature (= 27oC) for germanium crystal having 

5 ¥ 1022 atoms/m3.

Solution Given T = 27oC = 300 K and nC = 5 ¥ 1022 per m3

Formula used is
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ExamplE 3 Consider the Fermi 0.3 eV below the conduction band at room temperature (=27oC) in an n-type 

semiconductor. If the temperature is raised to 57oC, what would be the new position of Fermi level?

Solution Given EC – EF = 0.3 eV, T1 = 27oC = 300 K and T2 = 57oC = 330 K.

Formula used is 
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ExamplE 4 For an intrinsic semiconductor having band gap Eg = 0.7 eV, calculate the density of holes and 
electrons at room temperature (= 27oC).

Solution Given Eg = 0.7 eV.

In intrinsic semiconductor, the concentration of electrons and holes are same. So
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ExamplE 5 Assuming that there are 5 ¥ 1028 atoms/m3 in copper, find the Hall coefficient.

Solution Given n = 5 ¥ 1028 atoms /m3.

Formula used is
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ExamplE 6 Using free electron model, find the Hall coefficient of sodium assuming bcc structure for Na of 
cell side 4.28 Å.

Solution Given a = 42.8 ¥ 10–10 m.

Unit cell of sodium atom (Na) of volume a3 has 2 atoms, i.e.,
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obJectiVe tYPe QUestioNs

Q.1 The energy eigen value in a free electron model is given by
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P-N Energy Bands  

To reverse-bias the p-n junction, the p side is made more negative, 

making it "uphill" for electrons moving across the junction. The 

conduction direction for electrons in the diagram is right to left, and 

the upward direction represents increasing electron energy.  

 

 

 

For a p-n junction at equilibrium, the fermi levels match on the 

two sides of the junctions. Electrons and holes reach an equilibrium 

at the junction and form a depletion region. The upward direction in 

the diagram represents increasing electron energy. That implies that 

you would have to supply energy to get an electron to go up on the 

diagram, and supply energy to get a hole to go down.  
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To forward bias the p-n junction, the p side is made more 

positive, so that it is "downhill" for electron motion across the 

junction. An electron can move across the junction and fill a 

vacancy or "hole" near the junction. It can then move from vacancy 

to vacancy leftward toward the positive terminal, which could be 

described as the hole moving right. The conduction direction for 

electrons in the diagram is right to left, and the upward direction 

represents increasing electron energy.   

 

 

Forward Biased Conduction  

When the p-n junction is forward biased, the electrons in the n-

type material which have been elevated to the conduction band and 

which have diffused across the junction find themselves at a higher 

energy than the holes in the p-type material. They readily combine 

with those holes, making possible a continuous forward current 

through the junction.  
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