Electromagnetics

LEARNING OBJECTIVES

After reading this chapter, you will be able to understand:

* Displacement current. * Electromagnetic wave equation and its propaga-
* Equation of continuity. tion characteristics in free space.

* Maxwells equations (integral and differential forms). * Non-conducting and in-conducting media.

* Poynting vector and Poynting theorem. * Skin depth.

m Introduction

You have already studied static (i.e. time independengselectricsand magnetic fields in electrostatics and
magnetostatics, respectively in previous classes. Thesefields are produced by the charges at rest and steady
currents respectively, and can be analyzed independently«Buct if these fields vary with time, one cannot
analyze them independently. Now the question arises:Why?The answer is: Faraday’s law of electromagnetic
induction shows that a time-varying maghneticfield produces an electric field while Ampere’s law shows that
a time-varying electric field produces a magnetic field. Thus, changing of electric and magnetic field with
time, a field of other kind is induced in the adja€ent space which produces electromagnetic waves consisting
electric and magnetic fields.

11.1.1 Laws of Electromagnetics Before Maxwell
There are four basic laws of electricity and magnetism before Maxwell which are as follows:
1. Gauss law of electrostatics

VE=L o JEa=T
g, £,
Hete,g is charge'and p is the volume charge density.
2. Gauss’ lawiof magnetostatics

V.:B=0 o §B-dS=0
3. Faraday’s law of induction

VX E=—— or E-di=-—%

where ¢, is the magnetic flux.
4. Ampere’s law

VxB=p,]  or  $B-di=pl=p[]-dS
N

Here 7 is current and J is current density.



These equations are the relation between the field and their source and are used to solve the problems of
electromagnetic theory since long, even before the Maxwell started his work. Among the above four equa-
tions, the Ampere’s law in the present form is true only for steady case. Maxwell noticed this inconsistency
in equation during his study while applying Ampere’s law to a capacitor. Thus, Maxwell formulated the
concept of displacement current to remove this inconsistency and modified the Ampere’s law which will be
discussed in following sections.

m Displacement Current

The concept of displacement current was first conceived by Maxwell to explain the produetion of magnetic
field in empty space. According to him, it is not only the current in a conductor that produces.a magnetic
field, but a changing electric field in a vacuum or in a dielectric also produces a magnetic field. This means
that a changing electric field is equivalent to a current and gives same effect to magneticfield as the conduc-
tion current. This equivalent current is known as displacement current which exists it the space as long as the
electric field is changing and is expressed as

. 20
dr

In order to explain the displacement current mathematically, we consider the case of parallel-plate capacitor.
Let at any particular instant, ¢ be the charge on capacitor plate. According to the definition, conduction
current at any instant is

¥ (11.1)

We have already discussed about electrical displacement (D = €, E) in dielectrics (Chapter 9). Therefore,

D=c=2 (11.2)

where 0 is the surface charge'density’and A is the area of the parallel-plate capacitor. From Eq. (11.2)
we have

q=DA (11.3)
Now substitdting the value of ¢ from Eq. (11.3) in Eq. (11.1), we get

i{zi(DA)zAd—D (11.4)
dt dt

d
Maxwell suggested that the term 7, = ¢, % should be considered as the current inside the dielectric. This
r

current is called as displacement current and is denoted by 7,. Hence,

z’dzeod& = z'derod—E = z'dzAd—D = i,=FA (11.5)
dt dt dt



We know that /,=7,/A is current density. Therefore Eq. (11.5) may be written in terms of current density

J,as
J, == (11.6)

B AE .

or J =€ — ["D=¢g,E] (11.7)
dr

Thus, the current arising due to time-varying electric field between the plates of a capacitor is called the displace-

ment current.

11.2.1 Characteristics of Displacement Current

1. Displacement current is a current only in the sense that it produces a magnetic field. Tehas none of the
other properties of current because it is not related to the motion of charges.

2. Inside the dielectric there will be a displacement current which is equal to conduction current.

3. Displacement current is only an apparent current representing the ratesat which flow of charge takes
place from one plate to another plate.

4. Displacement current in good conductors is almost nil as compated to'conduction current below the
frequency 10" Hz.

m Equation of Continuity

Continuity equation is the consequence of conservation of charge. Law of conservation of charges states
that electric charges can neither be created nor destroyed. Therefore, the total current flowing out of the
system of some volume must be equal to the rate of decrease of charge within the volume. Therefore, when
the current flows at any region of volume ¥, bounded by a closed surface S then

oy T
z=—Z—§I‘>]-dS (11.8)

N

But we know that total charge is‘enclosed by the close surface in terms of volume charge density p with in
volume V, that is,

g=[pdv (11.9)
Therefore v
o ”d":-ja—’)dv
dr % > 0t
= = [Op
dS+ |4V =0 11.10
or C'E] {[at ( )

From the fundamental theorem of divergence, which is a relation between surface integral to volume
integral, we have

gSj-dE:jdev

N

:£(§~]+Z—€jdv=0



which is true for any arbitrary volume, therefore,

Vj+a—p=0 (11.11)
ot

This equation is the continuity equation and is based on the conservation of charge. When we use time
derivative term

% _,
ot

the above continuity equation is reduced to

V.7=0 (11.12)

That is, the net flux of current through any closed surface is zero which is the case'of steady state.

m Modification of Ampere’s Law

1.

Integral form of Ampere’s law: Maxwell modified the Ampere’sylaw by introducing the term of
displacement current from the study of charging and discharging of a capacitor. If we look at the
simple circuit with a capacitor Cin Fig. 1, the current flows inithe circuit after proper connection, the
charges start accumulating on the capacitor plates and the'magnetic field between the plates as well as
outside plate (around wire) is observed. As there ismoactualflow of charges between plates, there is no
conduction current as well, but the electric field in space due to charges on plates continuously changes
with the time as long as the charges on plates changesThis changing electric field cause the generation
of magnetic field between the plates.

Now in Fig. 1, we consider a smiall loop around the wire just to analyze the magnetic field due to
conduction current 7 in wire, then ac€ording to present Ampere’s law “The line integral of magnetic
induction B around a closed path is equalito y¢, times the current enclosed by the path.” Mathematically

$B-di=p, (11.13)

If the loop encloses a surface area S, then according to Stokes’ theorem

$B-di=[(VxBydS=p, (11.14)
5
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Figure 1 Modification in Ampere’s law.



But if the loop encloses a surface area S, (according to fundamental theorem of cutl, i.e. Stokes’ theo-
rem, no matter what surface you consider, if it is bounded with the same loop), no conduction current
passes through this surface. Then,

q}ﬁ.ﬂ:jﬁxé)-dﬁzo (11.15)
S,

The above two equations for the same loop with different surfaces are not same and the right-side
values of equations contradict, therefore, both cannot be true. Hence, the present form of Ampere’s
law is inconsistent or not true for all cases.

Now from the definition of displacement current which is

r

which is developed in the space between capacitor plate at surface S, and equal to the conduction cur-
rent in magnitude. Hence, either the conduction or the displacement/cutrentis present at any surface
under consideration, therefore both currents are to be considered ifi the Ampere’s law and equation is
modified in following form:

¢§~d7:uo(i+soi{&j:i+id (11.16)
s

Now after modification of equation as in above case;'whenS, surface is considered, 7, is absent and if
S, surface is considered, the only 7, is present and'anomaly or inconsistency in equation is removed.

To look at the differential form of Ampere’silaw;
PBAAL =iyl = 1, [T - dS (11.17)
S

where J is the current densicyinithe conductor having cross-sectional area S. Using Stokes’ law which
is a relation between line integral and surface integral, we have

B-di=((VxB)-dS=pu,|]-dS (11.18)
B3 4-{F 4

Since surface is arbitrary, so we have

VxB=p,] or VxH=] (11.19)

Taking'divergence on both sides of Eq. (11.19), we have

V(VxH)=V-]
Since 6-(§xﬁ):0, then also
V-j=0 (11.20)

Equation (11.20) is valid only for steady current. For other non-steady cases V - / # 0. In other words,
J is not always a solenoidal vector, hence Eq. (11.19) is inconsistent.



Also from the equation of continuity
s - op ap
V- J+—=0 or —=0
J ot ot
Here p is constant that shows charge density is not changing with the time. As a result, Ampere’s law
should be modified for time-varying field using a quantity J » which is to be added to the right-hand side

of Eq. (11.19), so that / together with  /,, becomes the solenoidal vector whose divergence is always
zero. Therefore, the following equation after introducing /,, is true for all cases.

VxH=]+], (11.21)
It can be explained in the following way: The equation of continuity

- 6/)
V-J+—=0
J Ot

from differential form of Gauss law (first Maxwell equation)

V.E=P or p=V-D
Then

v.7+T:vj+v.T:“.[7+aTJ=o (11.22)

Here ] +(dD/d7) is the solenoidal’vector whose divergence is always zero. To remove the in-
consistency in Ampere’s law, Maxwell‘suggested that the current density jshould be replaced by
T+ (85/8?) in Eq. (11.19). Hence, by imtroducing the term T+ (85/8?) in Eq. (11.19), the follow-
ing is the correct modified'differential form of Ampere’s law which is true for time varying as well as

for steady currents.

%ﬁ:]{a—l)j

Ot

or Vxﬁ=j+eoaa—E (11.23)
r

m Maxwell’s Equations

Maxwell, in 1864, theoretically derived the connection between the charges at rest (electrostatics), charges
in motion (current electricity), electric and magnetic field (electromagnetic) and summarized in terms of
four equations: Gauss’ law in electrostatic, Gauss’ law in magnetostatics, Ampere’s law and Faraday’s laws.
These equations are called Maxwell’s equations. Table 1 gives the four Maxwell’s equations in differential
and integral forms.




Table 1 Maxwell's equations in differential and integral form

S. No. Differential Form Integral Form
80 80 80 80
2 divB=0 or V.B=0 $B-dS=0
3 curlE=—a—B or §XE=—6—B (J.)E.Jﬁz_a&
ot Ot ot
oD = — - (oD = oD Y™
4 |H=]+| —. VxH=]+| — H-dl = +—=1-48
cur, ] [at j or Vx J [8;‘ ] (ﬁ J(] at)

where
p is the charge density.
D= EOE , electric displacement vector, €, is the

permittivity of the free space and E is the electric
field strength.

B=u,H, where 1, is the magnetic permeability of
free space and H is the magnetic field intensity,

11.5.1 Derivation of Maxwell’s First Equation

According to Gauss’ law in electrostatics The net flux passing through a closed surface is equal to 1/¢, times

the total charge ¢4 contained in the volume,enclosed by surface.” Mathematically,

@:@Eﬁzé

(11.24)

where CJ‘)E -dS represents the total flux passing through closed surface S. But we know that total charge

enclosed in the surface in terms’of volume charge density p with in volume V'is

g=[pav
v
From Egs. (11.24),and (11.25), we get that
$E-dS=L[pav
&
or [D-aS=[pav (D=g,E)
s v

By Gauss’ divergence theorem

[D-dS={divD)-dV =[pav
S 4 Vv

:j(divf)—p)deO
v

(11.25)



Since volume is arbitrary, hence

divD-p=0 or divD=p (11.26)
In free space, volume charge density p is zero. Therefore, Maxwell’s first equation in free space is

divD=V-D=0 (11.27)

11.5.2 Maxwell’s Second Equation

We know that magnetic monopole does not exist in the nature. Since magnetic lines of force entering or
leaving a closed surface are equal, therefore, the net magnetic flux passing through the area & §'of a closed
surface S is zero:

[B-dS=0 (11.28)
Using Gauss divergence theorem which is a relation between surface integral to volume integral as given below

gﬁﬁd@:j(v.ﬁ)dv

[(V-Byav =0
v
Since the volume is arbitrary

V-B=0 (11.29)

This is the requirement of Maxwell’s second equation and¥it istrite for free as well as material medium.

11.5.3 Maxwell’s Third Equation
According to Faraday’s law of electromagneétic induction the induced electromagnetic force around a closed
circuit is equal to the negative time rate‘of charge of magnetic flux linked with the circuit. Thus,

e:_”;_‘f (11.30)
But we know that o "
ezqu-dlz—z
o d[B-dS P
:@E-d!:—ST:—jEJS (11.31)

From Stokesfundamental theorem

<J§E~E=J(fo)-d3’

:j Vx E)- ds——j— ds

Since surface § is arbitrary, hence

VxE_—a—B (11.32)
ot

This is Maxwell’s third equation for free as well as for material medium.



11.5.4 Maxwell’s Fourth Equation

The integral form of Maxwell fourth equation is

$B-di=p, (z‘+sad—¢) (11.33)
dr
The current 7 in term of / and electric flux ¢ in terms of E for any surface can be expressed as
i=[7]-dS
o=[E-dS
The right side of equation can be expressed as
. de = dE -
t+e,—=|/-dS+¢g, | —-dS 11.34
S J / ”J dr ( )
From Stokes’ theorem
$B-di=[(VxB)-dS (11.35)
Therefore )
[(FxB)-dS = | [T-4S penf L .5
- dE
= +e,— |-dS
Hy [I[/ , dt] } (11.36)
Since surface § is arbitrary, hence
V]
dt
Vix H= (] + ’;—D) [ (D =¢,E)] (11.37)
t
This is Maxwell’s fourth equation/in differential form.
m Maxwell’s'Equation in Integral Form
1. Maxwell’s fitst equation in differential form is
V.-D=p (11.38)

Integrating it with respect to volume V, we get

j(VB)dV:jpdv

14

The volume integral can be changed into surface integral with the help of Gauss divergence theorem as

[(V-B)av=§D-a5

Vv

(11.39)



or gSEdS‘:i (11.40)

This is the integral form of Maxwell’s first equation.
2. Maxwell’s second equation in differential form is

V.B=0 (11.41)
Integrating second equation with respect to the volume V, we get
[(V-Byav =0

Vv
By Gauss’ divergence theorem

j(ﬁé)dtf:@ﬁdi

v
$B-dS=0 (11.42)
where S is the surface enclosing volume V. This is the integral form of Gauss’ divergence theorem in

magnetostatics.
3. Maxwell’s third equation in differential form is

VxB= 2 (11.43)

The surface integral can’be converted into line integral through Stokes’ theorem as

j(ﬁxﬁ).ﬁzg:@.ﬂ:—ﬂ%)ﬁ

N

Therefore —
- - OB -
@E-d/:-!(gj-ds
@E-d?:—‘zi: [-.-% =j§~d§} (11.44)

This is the integral form of Faraday’s law of electromagnetic induction. Equation (11.44) is the integral
form of Maxwell’s third equation.
4. Maxwell’s fourth equation in differential form is
D
ot

VxH=]+ (11.45)



Integrating above equation with respect to S, we get

[@xin-as=[|j+2| &
; ; ot
From Stokes’ theorem,

- — . — - - 8D) -
l(vxH)-dszgSHw:{(HEJ-ds

— - ¢~ - 9D -
@H.d/=£].ds+£$.ds

7.7 (; A\ (... _t+ 3
$H dl_( e, j (-% {E dSJ (11.46)

t

Equation (11.46) is the integral form of Maxwell’s fourth equation.

Physical Significance of Maxwell’s Equations

11.7.1 Maxwell’s First Electromagnetic Equation

Because of time independence, Maxwell’s first electromagnetiesequagion is a steady-state equation. It rep-
resents the Gauss’ law in electrostatics which states that the elécttic flux through any closed hypothetical
surface is equal to 1/&, times the total charge enclosed by*the susface.

11.7.2 Maxwell’s Second Electromagnetic Equation

Maxwell’s second electromagnetic equation represents Gauss’ law in magnetostatics. It states that the net mag-
netic flux through any closed surface is zero (i., the number of magnetic lines of flux entering any region is
equal to the lines of flux leaving it). It also'explains that no isolated magnetic pole exists.

11.7.3 Maxwell’s Third Electromagnetic Equation

Maxwells third electromagnetic equation represents Faraday’s law in electromagnetic induction. It states that
an electric field is induced in‘the form of close lines when magnetic flux (or lines of magnetic force) changes
through an open surface. The line integral of induced electric field around a close path is equal to the nega-
tive rate of change of magnetic flux.

11.7.4 Maxwell’s Fourth Electromagnetic Equation

Maxwell’s fourth electromagnetic equation represents the modified form of Ampere’s circuital law which states
that a changingelectric field produces a magnetic field and an electric field can also be produced by chang-
ing magnetic field. Therefore, Maxwell’s fourth electromagnetic equation gives the new concept of generation
of magneticfield by displacement current.

m Poynting Vector and Poynting Theorem

The moving oscillating coupled electric and magnetic fields behave as electromagnetic waves. These waves
are transverse in nature where electric and magnetic vectors oscillate perpendicular to the direction of
motion. During propagation, these waves also transport energy and momentum. The waves, when strike
any surface, exert a pressure on the surface.




Poynting Vector is defined as the energy transported by wave per unit area per unit time. It is denoted
by a vector P and can be expressed by the cross product of electric and magnetic field in the following way

EXB
M,
The direction of the flow of this power through unit area is in the direction of propagation of wave. Its SI
unit is Watt/m®,
Poynting theorem is a work—energy theorem of electromagnetics and expressed as work done on the
charges by the electromagnetic forces is equal to the decrease in energy stored in the fields, and less than the energy

that flows out through the surface. To derive and explain the Poynting theorem, let us take third and fourth
Maxwell equations as follows:

P=ExH or P=

(11.47)

VxE-_8 (11.48)
ot
6xﬁzi+%—D (11.49)
t

i-GxE=-a-2 (11.50)
ot
E-(VxH)=E- ] +E - 66_D (11.51)
t
Subtracting Eq. (11.50) from Eq. (11.51), sve get
A-GxB)-F-xH) -8 4.7 5.2 _ | 5.8, 590 F.;
t ot ot t
From vectors product
HAVxE)-E-(VxH)=V-(ExH) (11.52)
Therefore,
VoExi=-|a- L2 Eg (11:53)
ot ot
But D = eF and, B= uH. Therefore
VA(ExH)=-|uH- a—H+ ek - 3£ -E-]
ot ot

d(1 d(1 ~ - _ 0H 0 dE 0
=—| | zur? |+ | =B ||-E-] |- uH- = H* |and eE - — = —| —¢E?
[at(z” )+8t(28 ):| J ( H o 8t( H ) € ot E)t( € ))

- 0 5 0 l N v zom
E-] = [at( ,uH) 8t(28E ):l V(ExH)



Taking the volume integral over a volume V enclosed by surface S, we get

l(E.j) AV :_H%GNHZ}%GSEZH dV—lV(Exﬁ) v
Using Gauss divergence theorem
[VAExH)dv = $(ExH)-dS
Hence, '

J(E:7) dv_—j[ ( ui? + 1 JeE ):ldv-gﬁ(ﬁxﬁ)db’

Vv

(11.54)

(11.55)

Equation (11.55) represents the work energy theorem of electromagnetic and is ¢alled Poynting theorem for

the flow of energy in an electromagnetic field.

1. The term I(E -] )dV represents the work done per unit time on the charges by electromagnetic

fields. 4

d(1 1
2. The term _J.|:8_(5 UH? +58E2 ):| dV  represents the rateof decrease of stored energy in electric
t
)

and magnetic fields in volume V.

3. —95 (E x H)- dS represents the rate of flow of energy through surface area S enclosing volume V.

Here P=E x H is the energy flowingsthrough unit area and unit time and is known as the Poynting

VECtor.

m Plane Electromagnetic Waves in Free Space

We describe one of the imporgant applications of Maxwell’s equations to derive electromagnetic wave equa-
tions for field vectors £ andB. In fiee space, where there is no charge or current (i.e. p=0, ] 0,e=¢,

W=y, B=UH and D =g E),Maxwell’s equations are as follows:

V.-E=0
V-B=0
vxi--28

ot
Vxﬁzuosoa—E
ot

Taking the curl on both sides of Eq. (11.58) we get

(V><E) Vx[—a—B]

ot

(11.56)

(11.57)

(11.58)

(11.59)



V(V-E)—VZE=—3(§><§)

ot
Y R
Using Eq. VXB= ‘uos()a— and V- £=0
t
2
V’E = /40808—12E (11.60)
ot
Similarly taking the cutl of fourth equation (11.59) we get
§x(§x§):§x[‘uogoa—EJ
Ot
o 0 — —
V(V-B)-V'B=-pe,~ (VxE)
t
Y B
Using VXE:—a— and V-B=0 we have
t
0’B
Vszyogoy (11.61)
In vector form
= o' ¥y 0’B
V*E = Hy€ y, VZB = W€, y (1 162)
The general wave equation for any functionlike #imoving with speed v is
1 o’u
Viu=—— 11.63
T ( )

Therefore, from the above equation, Eq. (11.62) represents wave equations for E and B in free space. Each
Cartesian component of E and Bsatisfies the three-dimensional wave equation.

So Maxwell’s equations imply that empty space supports the propagation of electromagnetic waves,
travelling at a speed

=2.99x10° m/s

1 1
# . — o V= =
Ly, JHE,  \J(4r x107 Weber/A-m)(8.85x10™> C*N-m?)

Hence, electromagnetic waves propagate in free space with the speed of light:

(11.64)

In some other medium, velocity is given as

v= L _ ! (11.65)

Jue  Jum) (e,




where U, and €, are relative permeability and relative permittivity, respectively. Using Eq. (11.64), Eq. (11.65)

can be written as

c
V=
u?'EY
c . .
or v= T [For non-magnetic material p = 1]
87

Therefore,
n=\fg, (11.66)

The speed of light in a material is always less than in vacuum because g/ has a value greater than one.

m Transverse Nature of Electromagnetici\Waves

The electromagnetic waves are transverse in nature where E'and B vector oscillate perpendicular to the
propagation direction. To explain the transverse nature; let us have the solution of wave equations which are
mathematically second order differential equations{T’heiequations are

i’ 1 0’B
v MOEL, a4 vip- 198, (11.67)
¢ Ot ¢ Ot
The general solution of these equation are respectively
E(r,p) = Eaei(/;'i_w’)
and B(r,t)= B e (11.68)

where E, and'B, are the complex amplitudes for electric and magnetic fields, respectively, whose real part
represent the,physieal value. % is the wave vector and 7 is position vector which are expressed as

- 2r, 2. 2mv, O,
k=—n=—n=——-n=—n
A clv c c

F=xi+y+zk
7 is unit vector represents the wave propagation direction. Then

ko7=(ki+hj+kk)(d+y)+zk) =k x+ky+kz)



Now considering solution E, we find the divergence of Eq. (11.56), that is, V- E = 0.

= =[x 0 - A 0 A ~ ~ ik xthyy+k z—0r)
V-E—( a+]5+/eaj.(zb}x + jE,, +/eE0z)e

=i(Ey k, + Ey b+ E, k )¢50

0y “y 0z "z
Y] ~ 7 “ ~ 7 i(kyxth, y+ b, z—)
=i(ik, + ]/ey +hk,)-GE,, + JE, + hE, e
7 i(kx+k -
; [k . EO€ (kox+kyy+k,z wt)]

=ik-E

Since V-E=0. So
k-E=0 (11.69)
or E is perpendicular to #. Now % has direction of wave propagation, so E is pérpendicular to the direc-
tion of propagation. Similarly, consider second equation (11.57), V- B =0. We get
V-B=i(k-B)=Fk-B=0. (11.70)

So B is perpendicular to the direction of wave propagation. ThereforelEM wave is transverse in nature.

m Characteristic Impedance

Consider Maxwell’s third equation

= Xewij
VXE=——
ot
We solve it by considering £ and B as given by Eq. (11.68):
i 7 k
vxE=| & a2 2
Ox oy Oz
onez'(;-i—wz) Eoyei(l;-i—a)t) Eozei(lé-;—an)
. 0 i(kyx+hk,y+k,z—or) 0 i(kox+hk,y+k,z—0r)
1|25 )2 (5,e )

+}‘:E(E e,‘(kxx%yﬁkzz_w)) 0 (E ei(kxx+/eyy+kzz—wt) )j|
0x

_a oz

+ %|:% (Eoy ei(/exx+lgyy+/ezz—wt) ) . a_i(on ei(/exx+/eyy+kzz—w;) ):|

J

= i| ik E,, — k,E,) + jkEy, —k E,)+ Bk E,, — b E,)|eF



= ilk x E, 1" 7 = i[k x E]

i(kox+k, y+/e z— a)t)

aB _ 8 (B ei(/exx+/e),y+/ezz—wt)

d B_3 0B 0B
. Jdt ot ! ’
Hence from V x E = —a—, we have
t
i(kxE)=iwoB = kxE=wB (11.71)
. , L e = 0E
Similarly from Maxwell’s fourth equation VX B = p g, a—, we have
t
k x B =—au,e,E (11.72)

From Egs. (11.71) and (11.72) it can be concluded that electric and magnetic vectors FE and B are mutu-
ally perpendicular to each other and perpendicular to the direction of propagatien‘vector k (see Fig. 2).
Further from Eq. (11.71) we have

or ﬁ=,uoc— e, [§=‘UOH]

E/H is the characteristic impedance or intrinsic impedance of free space denoted by Z; and has the unit

electrical resistance. Its value is
45%x107
z,= [Ho o | DX 35650 (11.73)
£, 8.86x10

This implies that electric vector £ and magnetic field vector B are in the same phase.



m Electromagnetic Waves in Dielectric Medium

Since we are familiar that there is no free charge in dielectric medium therefore, p =0, 0 =0, and hence
J =0F =0. However, U and € have finite values. So Maxwell’s equations are as follows:

V-E=0 (11.74)
V-B=0 (11.75)
Vxi--28 (11.76)
ot
Vxﬁzuea—E (11.77)
ot
Taking curl on both sides of Eq. (11.76) we have
WWE):%X[_@_BJ
Ot
. o — @
V(V-E)-V E:_G_(VXB)
t
Using Eq. (11.77) we have
JO’E s 2
V’E = /,Lz-:az [FeVv-E=0]
Similarly taking curl of Eq. (11.77) we have
§x(§x§)=§x(‘uz—:a—E]
ot
- N 4 0 — —
V(V-B)-—V B:—,uga—(VxE)
t
Using Eq. (11.76) we have
Y d’B -
V*B= e 5 [--V.B=0]
In vector form
2 - 2n
VE = ug%f, Vzézusaa]f (11.78)
t

Equation (11.78) represents wave equations for E and B in dielectric medium.

m Electromagnetic Waves in Conducting Medium

In conducting medium, the charge given to material is always lie at the surface and no charge stay inside
the conducting material, hence charge density p =0. So, for a conducting medium Maxwell’s equations are
as follows:

o O

41 <l
! bx
I



In conducting medium D = ¢E, B= puH, ] =0E, where ¢ represents the conductivity of the isotropic
and homogeneous medium. Thus, Maxwell’s equations reduced to

V-E=0 (11.79)

V-B=0 (11.80)

VxE=_28 (11.81)
ot

Vxﬁzu(o E+eaa—f> (11.82)

To derive wave equation in conducting medium take the curl on both'sides of Eq. (11.81), we get

§x(§xf):§x[—a—8]
Ot

V(- B)-ViE S 2(xB)
o
Substituting the value of Y x B from Eq.(11.82) in the above equation, we get
V(V-E)-WZE = —u2[6E+£a—EJ

ot ot

Since V- B = 0 is from Maxwell’s'first equation, we have

d ’E
-VE=—-uo—-ue
Mo T e
- oF J’'E
V’E — uo — — ue =0 11.83
or H al’ u atz ( )
Similarly; we'ean obtain wave equation for B by taking curl of Eq. (11.82) and using Eq. (11.80) as
0B J’B
VB—uc ——-pue—=0 11.84
HO =~~~ HE =5 (11.84)

The above equations are wave equations in conducting medium. If we take ¢ = 0 and permeability and per-
mittivity for free space, the above equations will be for free space. In conducting medium, the wave vector &
is a complex and the real part of it determines the physical values of wave such as wavelength and speed of
wave. The imaginary part of wave vector results in an attenuation of wave (decreasing amplitude of £'and B
with depth of penetration in medium). Here unlike in free space, the electric and magnetic field vectors are
no longer in phase, rather magnetic field lags behind the electric field (Fig. 3).



Figure 3 Phase-diagram of electric and magnetic field vectors.

m Skin Depth

Skin depth is an essential parameter for the wave when the electromagneticavaves penetrate in conducting
medium. Iz is the depth in conducting medium in which the strength of electric fréld is reduced 1/e times of its
original values.

The skin depth is frequency dependent for good conductor andifrequency independent for poor con-
ductor. Consider the solution of wave equation (11.83) as

E(V,t) — Eoej(lm—wz)

where # is complex and can be expressed with real and dmaginary term o and 3 respectively as £ = o + j 3.
Now if wave is moving along z direction with E vector parallel to x, then E will be

E (Z,t): E gj((a+fﬁ)z—wz)

or El(z,1r) = Eaxe_ﬁzej(m_m)

the attenuation factor is ¢ . E. should be (1/¢) times its original value if Bz = 1. In this case z, the depth
in the medium becomes skin depth andiis denoted by 0 as shown in Fig. 4. Hence,

1
=5 =— (11.85)
TR

1_ ——
F_O'SGB

Figure 4 Skin depth.



The value of & and B can be obtained with wave equation

- oF J°E
VE - uo—- =0
Ho ot He ot

and its solution
_ il(a+jB)z—wr]
E (z,0)=E """

azw\/\/‘u—ig{(l+ izzj +1]; ﬁ:a)\/ EKI+ Gzzzj —1} (11.86)
2 w°E 2 w°E

For good conductor (0 > ), Hence
lue (o [uow
= |[—| — — -
P 2 (wg j or P 2

s=Ll_ |2 (11.87)

B \uow

which will be

Thus, skin depth

In terms of frequency (f') skin depth will be

SZJ 2 ZJ 1 (11.88)
27 f o rfuo

From Eq. (11.88), we can conclude that skin depth or penetration depth is inversely proportional to the root of

[frequency of wave.
For poor conductor (G < ew)

ue 1 o
or PNy e
_0 K
or ﬁ—z\/:
Thus, skin depth
s=L_2 & (11.89)
B o\u

From the above equation, we can conclude that skin depth or penetration depth is independent of frequency
of wave.



- Solved Examples
| Example 1

Prove that electromagnetic waves propagate with speed of light.

Solution: The wave equations for E and B in free space are as follows:

- I’E . 9°B
VZE = HE, 87, VzB = €, 87
In vacuum, then, each Cartesian component of E and B satisfies the three dimensio% uation.
Hence
V2, = 1 0°u

~ 252
So Maxwell’s equations imply that empty space supports the propagation C agnetic waves, travel-

ling at d
lng at a SpCC ,

1
Ho€y =~ \
v
1 1 .
=v= = =2.99 x10° m/s
\/ HoE, \/ (47 X107 Weber/A-m) (& C*N-m?)

From this result we can conclude that ligh n electromagnetic wave.

mé’v

Prove that thxeeji ofilight in a material is always less than that in vacuum.

Solution:
veloci iven

w that in vacuum material travels with velocity of light. In some other medium,

1 1
T e Jm) es,)

where . and €, are relative permeability and relative permittivity, respectively. Since

1

Ho€,y

c =




therefore ;

=

#78)‘
c . .

or v= T [For non-magnetic material 1 = 1]
gr

The speed of light in a material is always less than that in vacuum because €, has a value greater than one.

Example 3 x%

Determine refractive index and velocity of light if the relative permittivity of distill er 15°64.
Solution: The velocity of distilled water is given by
e %,
#1’87

where (., =1, c=3 x 10° m/sec and €, = 64. Therefore °

10° \

v=200 _375x
J64
As we know, the refractive index 7 of the medium i erefore,
=8

Example 4
A uniform plane wave havi C eld intensity in air as 7 X 10° V/m in the y-direction is propagating
in the x-direction at a fre f 2 X 10° rad/sec. Determine the frequency, wavelength, time-period

and amplitude of
Solution: have
E=7x 10° cos (2 X 10°¢ — px)

Here X W0°rad/sec, pt, =41 x107 Weber/A-m, £, =8.85x10""> C*'N-m”. Now frequency is
given b
8
p="l =220 5155510° Hy=3.18x107 Hz

=27r =2><3.14

Wavelength is given by
v _ 3x10°

l=—=—7=9.43m
v 3.18x10




Time period is given by

l=l:%=3.14x10_ssec
v 3.18x10
Amplitude of H is
E E
L_L_ B _37677~3770
H H, &
_7x10°

=18.56 A/m

=H ;
Therefore %
H_=18.56 cos (2 X 10° £ — px) \

If the magnitude of E in a plane wave is 377 V/m, determine the ma e oftH for a plane wave in free
space.

Solution: We have

L. “ =377Q = H @&1A/m
H
Example 6 k
A parallel-plate capacitor with circular p adius 2 = 0.055 m is being charged at a uniform rate so

that the electric field between the plates ch es at a constant rate

8_ =1.5%10" V/m/s

t
Determine the dis laceme@nt for the capacitor.
W

Solution: The disp current density between the plates of the capacitor is

\ 7 .00 _, o
\ Yo or
Displa utrent

I

p=(md) ], = ngoa_E
ot
Here OB
8_ =1.5%10" V/m/s, 2=0.055 m and g, =8.85x% 1072 C*N-m?
t
Displacement current

Ip=nd’, % 134
Ot




Example 7

A lamp radiates 500 W power uniformly in all directions. Calculate the electric and magnetic field inten-
sities at 1 m distance from the lamp.

Solution: As we know Poynting vector P = E X H is the energy flowing through unit area and unit
time. Now

Area= 4nr’=4r(1) =4n m’

Now m

P= Joule/m*/sec %
4 \

o g =22 0
41
But we know that E E @
LE_LZo_ b 376773770

H FO £,
So E =377 H.Multiplying both sides by A and using the value) we get
5775 B =20 o g - 20
4r 77
5
0.33 A-turn/m
Now
EH = >0 =& = 0 =120.63 V/m
x0.33

Example 8
Earth receives 2 calories oergy per minute per cm? as an average over a year for whole surface.
What are the ampligudes of ave age electric and magnetic field radiation?
Solution: The energy teceived by an electromagnetic power flow is given by
\ PoExH
- 2%x4.2x10"
=>P= 2x42x10 1400 Joule/m*/s
60
Now P =EH. So EH =1400. But we know that
E E
ZoZoo B 567723770
H H, £,
So
E >
Ex - =1400= E = 527240 E,, =726.1 A-turn/m




Similarly H. g €20 be calculated as
1400
Havg =
E

= H,, =1.928 A-turn/m

The amplitudes are calculated using the following expression:
E,=E, N2 =1414x726.1=1026.7 A-turn/m

Similarly H =2.726 A-turn/m.

Example 9

Calculate the skin depth for a frequency of 10% Hz for silver if 11, = 477 %10~ Weber/A-m, & = 3 x 10 S/m.

Solution: We know that

Given that y, = 47 X107 Weber/A-m, 0 =3 x 10" S/m and o = 27f=10%. So

S =

=\/ Z =0.091x10""m

1
b \dr x107%x 34107 x 21 x10%

- ShortiAnswers/of Some Important Questions

1. How was the idea of electromagnetic waves 2. What do you understand by electromagnetic

conceived? waves?

Answer;: Faraday’s law suggests that a time-varying Answer: Electromagnetic waves consist of chang-
magnetic field produces an electric field while ing electric and magnetic fields. The electric and
Ampere’s law shows that a time-varying electric magnetic components of plane electromagnetic
field produces a magnetic field. Using this fact, wave are perpendicular to each other and also
Maxwell showed that if either of the electric or perpendicular to the direction of the propaga-
magnetic field changes with time, a field of another tion. These waves propagate in space from one
kind is induced in the adjacent space and produces position to another even in absence of material

waves which are called electromagnetic waves. medium.



3.

Write down some properties of electromagnetic
waves.

Answer: The properties of electromagnetic waves
travelling through free space are as follows:

1. Electromagnetic waves travel with the speed
of light.

2. Electromagnetic waves are transverse waves.

3. The ratio of electric to magnetic field in an
electromagnetic wave equals the speed of
light.

4. Electromagnetic waves carry both energy
and momentum.

Give some examples of electromagnetic waves.

Answer: Radio waves, light, X-rays, y-rays, etc.
are the examples of electromagnetic waves.

What is displacement current?

Answer: The rate of change of electric displace-
ment vector with time is known as displace-
ment current. In other words, one can say that
the displacement current is the current arising
due to time-varying electric field between the
plates of the capacitor.

What is the role of displacement current in
electromagnetics?

Answer: On the basis of displacement efirrent,
the symmetry character of electric field and
magnetic field is more prominent. With the
introduction of current density,'a changing
electric field is now seen.to produce magnetic
field just as a changing imagnetic field gives rise
to electric field. Thus, higher degree of sym-
metry of electrieiand magnetic field is more
satisfactory. Also onithie basis of displacement
current;yboth, steady and non-steady current
circuits may,beanalyzed as well as all the varia-
tions IMBAC “circuits with a capacitor can be
easily understood.

Differentiate between conduction current and
displacement current.

Answer:

1. Conduction current is due to the actual
flow of current in a conductor while

10.

displacement current is the result of time-
varying electric field in a dielectric.

2. Conduction current density is the product
of electrical conductivity and electric field;
however, displacement current density is
the rate of change of electric displacement
vector with time.

3. Conduction current obeys Ohm’s law while
displacement does not obey Ohm’s law.
Write down Maxwell’s equationsuift dielectric

media.

Answer: In dielectric mediumythere is no free

charge. So 0 =0, / =0and p =0. Therefore,

Maxwell’s equations ate as follows:

VD=0V -B=0

N\, 93 — 9D
VXE=+—; VXH=—
ot ot
Show that £/B = ¢, where ¢ is the velocity of

clectromagnetic wave.

Answer: We know that
kx E=whB

Since we have already discussed that electric
field vector is perpendicular to the direction of
propagation, so

k-E=wB
E w 2nv
or = === =vA
B k 2rm/A
or £=c [ e=VA]
B

What is Poynting vector?

Answer: P=EXH is the energy flowing
through unit area and unit time and is known
as the Poynting vector. It is also called the flux
vector. The SI unit of Poynting vector is Wm™.



- Important Points and Formulas

1.

With the change in electric and magnetic field
with time, a field of other kind is induced in the
adjacent space which produces electromagnetic
waves consisting electric and magnetic fields.

Maxwell formulated the concept of displace-
ment current to remove the inconsistency in
, ~ _aD
Ampere’s law by adding the term [, = o
t
The current arising due to time-varying electric
field between the plates of a capacitor is called
the displacement current.
= dE
=& —
Jo=e
The equation of continuity is based on the con-
servation of charge.
Electromagnetic waves propagate with the
speed of light 1

- Multiple Choice Questions

1.

3.

4.

6.

10.

The speed of light in a material is always less
than in vacuum because €, has a value greater
than one.

According to Poynting theorem, the rate at
which electromagnetic energy in a finite
volume decreases with time is equal to the rate
of dissipation of energy in the form of joule
heat plus the rate at which energyflows out of
the volume.

P = E x H is the energy flowing through unit
area and unit time ands«is known as the Poynting
vector. It is also called’the flux vector. The SI
unit of Poyntingivectoris Wm .

Skin depth is'the depth in conducting medium
in which the amplitude of the electromagnetic
wave is reduced (1/¢) times of its original value.
The ‘skin depth is frequency dependent for
good conductor and frequency independent in
poor conductor.

Displacement current is due to

(a) displacement of electric charges

(b) time varying magnetiéifield

(c) time varying electric field

(d) Both (b) and (c)

Equation of continuity is'based on

(a) conservationiof charges

(b) conservation of mementum

(c) conservasion of angular momentum

(d) None of these

Time varying clectric field in the region
between the plates is equivalent to

(a) conduction current

(b) displacement current

(c) Both (a) and (b)

(d) Neither (a) nor (b)

Who observed that a time varying magnetic
field gave rise to an electric field.

(a) Maxwell (b) Ampere

(c) Oersted (d) Faraday

Poynting theorem represents

(@) conservation of charges

(b) conservation of momentum

(c) conservation of energy

(d) None of these

Maxwell observed and corrected a discrepancy in
(a) Ampere’s Law

(b) Faraday’s Law

(c) Gauss Law for electrostatics

(d) None of these

According to maxwell’s equation in free space;

V-E=2
@@ P
(o ple,

(b) 0
@2
p

In a conducting medium, the electromagnetic
waves are.

(a) amplified

(c) both (a) & (b)

(b) attenuated
(d) None of the these



10.

Energy density in electric and magnetic field is

(a) Different b) 1.5

(o L/IC (d) Same

The wave velocity in non-conducting medium

is
1

(@ —

Jue

(b) Jule

11.

- Short Answer Type Questions

1.

b

- Long Answer Type Questions

1.

1

(d

Ho&y

The characteristic impedance of free space is
(@ 0 (b) 1
(c) 377 (d) None of these

What do you understand by electromagnetic
waves?

What are Maxwell’s equations?
What do you mean by displacement current?

Differentiate between conduction current and
displacement current.

5. What is current densigy?

6. Write down Maxwell'siequations for free space.
7.

8. What de,you understand by impedance?

What is Poynting vector?

Explain the concept of Maxwell’s displacement
current and show how it led to the'miodifica-
tion of Ampere’s law.

Derive Maxwell’s equations; Explain the physi-
cal significance of each equation.

- Numerical’Problems

2.

3.

Derive the electromagnetic wave equations in
vacuum. Hence show that the waves travel at a
speed of light.

Derive Poynting theorem. Explain each term.
Prove that electromagnetic waves propagate

with speed of light.

Determine refractive index and velocity of light
if the relativepermittivity of distilled water is 81.

A uniform plane wave has electric field intensity
in air as 7500 V/m in the y-direction. The wave
is propagating in the x-direction at a frequency
of 2 x 10° rad/s. Determine the frequency,
wavelength, time-period and amplitude of H.

If the magnitude of E in a plane wave is
455 V/m, determine the magnitude of H for a

plane wave in free space.

A parallel-plate capacitor with circular plates

of radius @ = 0.55 cm is being charged at

a uniform rate so that the electric field

between the plates changes at a constant rate

oF

5, 1.5x10" V/m/s. Determine the displace-
t

ment current for the capacitor.

A lamp radiates 400 W power uniformly in all

directions. Calculate the electric and magnetic

field intensities at 1.5 m distance from the lamp.



- Answers

Multiple Choice Questions

1. (o) 4. (d) 7. (b)
2. (a) 5. (o) 8. (b)
3. (b) 6. (a) 9. (d

Numerical Problems

1. 9,3.33x 10" m/s

2. 3.18x10°Hz, 0.94 m, 3.14x10” s and
19.89 A/m

3. 1.21 A/m

10. (a)
11. (¢

4. 1.3x107A

X2

5. 796.18 V/m and 0.04 A@

O\
Q}
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