
 11.1 Introduction

You have already studied static (i.e. time independent) electric and magnetic fields in electrostatics and 
magnetostatics, respectively in previous classes. These fields are produced by the charges at rest and steady 
currents respectively, and can be analyzed independently. But if these fields vary with time, one cannot 
analyze them independently. Now the question arises: Why? The answer is: Faraday’s law of electromagnetic 
induction shows that a time-varying magnetic field produces an electric field while Ampere’s law shows that 
a time-varying electric field produces a magnetic field. Thus, changing of electric and magnetic field with 
time, a field of other kind is induced in the adjacent space which produces electromagnetic waves consisting 
electric and magnetic fields.

11.1.1 Laws of Electromagnetics Before Maxwell 
There are four basic laws of electricity and magnetism before Maxwell which are as follows:
 1. Gauss’ law of electrostatics

∇ ⋅ =
�� �

E
r
e0

  or  
� �

� E dS
q

⋅ =∫ e0

  Here q is charge and r is the volume charge density.
 2. Gauss’ law of magnetostatics

∇ ⋅ =
�� ��

B 0   or  
� �

�B dS⋅ =∫ 0
 3. Faraday’s law of induction

Ñ´ = -
¶
¶

�� �
�

E
B
t

  or  E d l
t
B

�� �
� ⋅ = −

∂
∂∫
f

  where fB is the magnetic flux.
 4. Ampere’s law

∇ × =
�� �� ��

B Jm0   or  B d l I J dS
S

�� � � �
� ⋅ = = ⋅∫ ∫m m0 0

  Here I is current and J  is current density.

•	 Displacement	current.
•	 Equation	of	continuity.
•	 Maxwells	equations	(integral	and	differential	forms).
•	 Poynting	vector	and	Poynting	theorem.

•	 Electromagnetic	wave	equation	and	its	propaga-
tion characteristics in free space.

•	 Non-conducting	and	in-conducting	media.
•	 Skin	depth.

LEARNING OBJECTIVES

After reading this chapter, you will be able to understand:

Electromagnetics11
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These equations are the relation between the field and their source and are used to solve the problems of 
electromagnetic theory since long, even before the Maxwell started his work. Among the above four equa-
tions, the Ampere’s law in the present form is true only for steady case. Maxwell noticed this inconsistency 
in equation during his study while applying Ampere’s law to a capacitor. Thus, Maxwell formulated the 
concept of displacement current to remove this inconsistency and modified the Ampere’s law which will be 
discussed in following sections.

 11.2 Displacement Current 

The concept of displacement current was first conceived by Maxwell to explain the production of magnetic 
field in empty space. According to him, it is not only the current in a conductor that produces a magnetic 
field, but a changing electric field in a vacuum or in a dielectric also produces a magnetic field. This means 
that a changing electric field is equivalent to a current and gives same effect to magnetic field as the conduc-
tion current. This equivalent current is known as displacement current which exists in the space as long as the 
electric field is changing and is expressed as

e
f

o

d

dt
E

In order to explain the displacement current mathematically, we consider the case of parallel-plate capacitor. 
Let at any particular instant, q be the charge on capacitor plate. According to the definition, conduction 
current at any instant is

 
i

dq

dtc =  (11.1)

We have already discussed about electrical displacement (D = eo E ) in dielectrics (Chapter 9). Therefore,

 
D

q

A
= =s  (11.2) 

where s  is the surface charge density and A	 is	 the	area	of	 the	parallel-plate	capacitor.	From	Eq.	 (11.2)	 
we have

 q DA=  (11.3)

Now substituting the value of q	from	Eq.	(11.3)	in	Eq.	(11.1),	we	get

 
i

d
dt

DA A
dD
dtc = =( )  (11.4)

Maxwell suggested that the term i
d

dtd o
E= e

f
 should be considered as the current inside the dielectric. This 

current is called as displacement current and is denoted by id. Hence,

 
i

d
dtd o

E= e f
 ⇒ i A

dE
dtd o= e  ⇒ i A

dD
dtd =  ⇒ i EAd =  (11.5)
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11.3   EquATion of ConTinuiTy  •  213

We know that Jd = i Ad / 	is	current	density.	Therefore	Eq.	(11.5)	may	be	written	in	terms	of	current	density	
Jd as

 

�
�

J
dD
dtd =  (11.6)

or  
�
J

dE
dtd = e0     [∵

�
D E= e0 ] (11.7)

Thus, the current arising due to time-varying electric field between the plates of a capacitor is called the displace-
ment current.

11.2.1 Characteristics of Displacement Current 
 1. Displacement	current	is	a	current	only	in	the	sense	that	it	produces	a	magnetic	field.	It	has	none	of	the	

other properties of current because it is not related to the motion of charges.
 2. Inside the dielectric there will be a displacement current which is equal to conduction current.
 3. Displacement	current	is	only	an	apparent	current	representing	the	rate	at	which	flow	of	charge	takes	

place from one plate to another plate.
 4. Displacement	current	in	good	conductors	is	almost	nil	as	compared	to	conduction	current	below	the	

frequency 1015 Hz.

 11.3 Equation of Continuity 

Continuity equation is the consequence of conservation of charge. Law of conservation of charges states 
that electric charges can neither be created nor destroyed. Therefore, the total current flowing out of the 
system of some volume must be equal to the rate of decrease of charge within the volume. Therefore, when 
the current flows at any region of volume V, bounded by a closed surface S then

 
i

dq

dt
J dS

S

= − = ⋅∫
� �

�  (11.8)

But we know that total charge is enclosed by the close surface in terms of volume charge density r with in 
volume V, that is,

 
q dV= ∫ r

V

 (11.9)

Therefore

i
dq

dt
J dS

t
dV

S V

= − = ⋅ = − ∂
∂∫ ∫

� �
�

r

or 
� �

� J dS
t

dV
S V

⋅ + ∂
∂

=∫ ∫
r

0  (11.10)

From the fundamental theorem of divergence, which is a relation between surface integral to volume 
 integral, we have

� � �� �
� J dS J dV
S V

⋅ = ∇ ⋅∫ ∫

Þ Ñ× +
¶
¶

æ
è
ç

ö
ø
÷ =ò

�� �
J

t
dV

V

r
0
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which is true for any arbitrary volume, therefore,

 
Ñ× +

¶
¶

�� �
J

t
r = 0 (11.11)

This equation is the continuity equation and is based on the conservation of charge. When we use time 
derivative term

¶
¶

=
r
t

0

the above continuity equation is reduced to

 ∇ ⋅ =
�� �

J 0  (11.12)

That is, the net flux of current through any closed surface is zero which is the case of steady state.

 11.4 Modification of Ampere’s Law

 1. Integral form of Ampere’s law: Maxwell modified the Ampere’s law by introducing the term of 
 displacement current from the study of charging and discharging of a capacitor. If we look at the 
simple circuit with a capacitor C in Fig. 1, the current flows in the circuit after proper connection, the 
charges start accumulating on the capacitor plates and the magnetic field between the plates as well as 
outside plate (around wire) is observed. As there is no actual flow of charges between plates, there is no 
conduction current as well, but the electric field in space due to charges on plates continuously changes 
with the time as long as the charges on plates change. This changing electric field cause the generation 
of magnetic field between the plates.

   Now in Fig. 1, we consider a small loop around the wire just to analyze the magnetic field due to 
 conduction current i in wire, then according to present Ampere’s law “The line integral of magnetic 
induction B around a closed path is equal to µ0 times the current enclosed by the path.” Mathematically

 
B d l io

�� �
� × =ò m  (11.13) 

  If the loop encloses a surface area S1	then	according	to	Stokes’	theorem

 
B d l B d S i

S

�� � �� �� �
� × = Ñ´ × =òò ( ) mo

1

 (11.14)

C
i

R E

S

S1

S2

Figure 1 Modification in Ampere’s law.
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11.4   modifiCATion of AmPERE’s lAw •  215

  But if the loop encloses a surface area S2	(according	to	fundamental	theorem	of	curl,	i.e.	Stokes’	theo-
rem, no matter what surface you consider, if it is bounded with the same loop), no conduction current 
passes through this surface. Then,

 
B d l B d S

S

�� � �� �� �
� × = Ñ´ × =òò ( ) 0

2

 (11.15)

  The above two equations for the same loop with different surfaces are not same and the right-side 
values of equations contradict, therefore, both cannot be true. Hence, the present form of Ampere’s 
law is inconsistent or not true for all cases.

   Now from the definition of displacement current which is

i
d

dtd o
E= e

f

  which is developed in the space between capacitor plate at surface S2 and equal to the conduction cur-
rent in magnitude. Hence, either the conduction or the displacement current is present at any surface 
under consideration, therefore both currents are to be considered in the Ampere’s law and equation is 
modified in following form:

 
B d l i

d

dt
i io o

E
d

�� �
� × = +æ

è
ç

ö
ø
÷ = +ò m e f

 (11.16)

  Now after modification of equation as in above case, when S1 surface is considered, id is absent and if 
S2 surface is considered, the only id is present and anomaly or inconsistency in equation is removed.

 2. To look at the differential form of Ampere’s law,

 
B d l I J dS

S

�� � �� �
� × = = ×ò òm m0 0  (11.17)

  where
�
J  is the current density in the conductor having cross-sectional area 

�
S .	Using	Stokes’	law	which	

is a relation between line integral and surface integral, we have

 
B d l B d S J d S

S S

�� � �� �� � �� �
� ⋅ = ∇ × ⋅ = ⋅∫ ∫ ∫( ) m0  (11.18)

  Since	surface	is	arbitrary,	so	we	have

 Ñ´ =
�� �� ��

B Jm0   or  Ñ´ =
�� ��� ��

H J  (11.19)

  Taking	divergence	on	both	sides	of	Eq.	(11.19),	we	have

Ñ× Ñ´ = Ñ ×
�� �� ��� �� ��

( )H J

  Since	Ñ× Ñ´ =
�� �� ���

( )H 0, then also 

 ∇ ⋅ =
�� �

J 0  (11.20)

  Equation	(11.20)	is	valid	only	for	steady	current.	For	other	non-steady	cases	 ∇ ⋅ ≠
�� �

J 0. In other words, 
J	is	not	always	a	solenoidal	vector,	hence	Eq.	(11.19)	is	inconsistent.
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  Also from the equation of continuity

∇ ⋅ + ∂
∂

=
�� �

J
t
r

0   or  
∂
∂

=r
t

0

  Here r  is constant that shows charge density is not changing with the time. As a result, Ampere’s law 
should be modified for time-varying field using a quantity J D

��
 which is to be added to the right-hand side 

of Eq.	(11.19),	so	that	J together with J D

��
 becomes the solenoidal vector whose divergence is always 

zero. Therefore, the following equation after introducing J D

��
 is true for all cases.

 Ñ´ = +
�� ��� �� ��

H J J D  (11.21)

  It can be explained in the following way: The equation of continuity

Ñ× +
¶
¶

=
�� �

J
t

r
0

  from differential form of Gauss law (first Maxwell equation) 

∇ ⋅ =
�� �

E
r
e0

  or   r = ∇ ⋅
�� ���

D

  Then 

 
∇ ⋅ + ∂

∂
= ∇ ⋅ + ∇ ⋅ ∂

∂
= ∇ ⋅ + ∂

∂

�� ��
��

���
�� �� ��

���
���

�� ��
���
��J

t
J

D

t
J

D

t

r ��








 = 0  (11.22)

  Here J D t
�� ��� �

+ ∂ ∂( ) is the solenoidal vector whose divergence is always zero. To remove the in-

consistency in Ampere’s law, Maxwell suggested that the current density J
��

should be replaced by 

J D t
�� ��� �

+ ∂ ∂( )	in	Eq.	(11.19).	Hence,	by	introducing	the	term	 J D t
�� ��� �

+ ∂ ∂( )	in	Eq.	(11.19),	the	follow-

ing is the correct modified differential form of Ampere’s law which is true for time varying as well as 

for steady currents.

Ñ´ = +
¶
¶

æ

è
ç

ö

ø
÷

�� ��� �
�

H J
D

t

  or ∇ × = + ∂
∂

�� ��� �
�

H J
E
t

e0  (11.23)

 11.5 Maxwell’s Equations

Maxwell, in 1864, theoretically derived the connection between the charges at rest (electrostatics), charges 
in motion (current electricity), electric and magnetic field (electromagnetic) and summarized in terms of 
four equations: Gauss’ law in electrostatic, Gauss’ law in magnetostatics, Ampere’s law and Faraday’s laws. 
These equations are called Maxwell’s equations. Table 1 gives the four Maxwell’s equations in differential 
and integral forms.
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Table 1 Maxwell’s equations in differential and integral form

S. No. Differential Form Integral Form

1. div
�
E = r

e0

 or ∇ ⋅ =
�� �

E
r
e0

� �
� E dS

q
⋅ =∫ e0

 or 
� �

� E dS dV⋅ =∫ ∫
1

0e
r

2. div B
��
= 0 or ∇ ⋅ =

�� ��
B 0

� �
�B dS⋅ =∫ 0

3. curl
�

�
E

B
t

= -
¶
¶

 or Ñ´ = -
¶
¶

�� �
�

E
B
t

E d l
t
B

�� �
� ⋅ = −

∂
∂∫
f

4. curl H J
D

t

��� �
�

= +
¶
¶

æ

è
ç

ö

ø
÷.  or Ñ´ = +

¶
¶

æ

è
ç

ö

ø
÷

�� ��� �
�

H J
D

t
. H dl J

D

t
d S

S

��� � ��
���

�
� ⋅ = + ∂

∂






⋅∫ ∫
where
r  is the charge density.
�

D = e0

�
E , electric displacement vector, e0  is the 

permittivity of the free space and 
�
E  is the electric 

field strength.� �
B H= m0 , where m0 is the magnetic permeability of 
free space and 

�
H  is the magnetic field intensity.

11.5.1 Derivation of Maxwell’s First Equation 
According to Gauss’ law in electrostatics ‘The net flux passing through a closed surface is equal to 1 0/e  times 
the total charge q contained in the volume enclosed by surface.’ Mathematically,

 
f

eE E dS
q

= ⋅ =∫
� �

�
0

 (11.24)

where E d S
�� �

� ×ò  represents the total flux passing through closed surface S. But we know that total charge 

enclosed in the surface in terms of volume charge density r  with in volume V is

 
q dV

V

= ∫ r  (11.25)

From	Eqs.	(11.24)	and	(11.25),	we	get	that	
� �

� E d S dV⋅ =∫ ∫
1

0e
r

or D d S dV
S V

��� �
⋅ =∫ ∫ r    (∵

��� ��
D E= e0

)

By Gauss’ divergence theorem

D d S D dV dV
S V V

��� � ��� ��
⋅ = ⋅ =∫ ∫ ∫(div ) r

⇒ − =∫ ( )div D dV
V

���
r 0
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Since	volume	is	arbitrary,	hence

 div D
���

− r  = 0  or  div D
���

= r  (11.26)

In free space, volume charge density r  is zero. Therefore, Maxwell’s first equation in free space is

 div D D
��� �� ���
= Ñ × = 0  (11.27)

11.5.2 Maxwell’s Second Equation
We	know	that	magnetic	monopole	does	not	exist	in	the	nature.	Since	magnetic	lines	of	force	entering	or	
leaving a closed surface are equal, therefore, the net magnetic flux passing through the area d S

�
of a closed 

surface S is zero:

 
B d S

S

�� �
× =ò 0  (11.28)

Using Gauss’ divergence theorem which is a relation between surface integral to volume integral as given below

B d S B dV
S V

�� � �� ��
� ⋅ = ∇ ⋅∫ ∫ ( )

( )∇ ⋅ =∫
�� ��

B dV
V

0

Since	the	volume	is	arbitrary

 ∇ ⋅ =
�� ��

B 0  (11.29)

This is the requirement of Maxwell’s second equation and it is true for free as well as material medium.

11.5.3 Maxwell’s Third Equation
According to Faraday’s law of electromagnetic induction the induced electromagnetic force around a closed 
circuit is equal to the negative time rate of charge of magnetic flux linked with the circuit. Thus,

 
e

d
dt

= − f
 (11.30)

But we know that

e E d l
d

dtc

= ⋅ = −∫
�� �

�
f

 
Þ × = -

×
= -

¶
¶

×ò
ò

òE d l

d B d S

dt

B

t
d S

c

S
�� �

�� �
��

�
�  (11.31)

From	Stokes’	fundamental	theorem
� ��� �� �� �

� E dl E d S
c
∫ ∫⋅ = ∇ × ⋅( )

Þ Ñ´ × = -
¶
¶

×ò ò( )
�� �� �

���
�

E d S
B

t
d S

Since	surface	S is arbitrary, hence

 
Ñ´ = -

¶
¶

�� ��
��

E
B
t

 (11.32)

This is Maxwell’s third equation for free as well as for material medium.
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11.5.4 Maxwell’s Fourth Equation
The integral form of Maxwell fourth equation is

 
B d l i

d
dto o

�� �
� × = +æ

è
ç

ö
ø
÷ò m e f
 (11.33)

The current i in term of J and electric flux f 	in	terms	of	E	for	any	surface	can	be	expressed	as

i J d S= ×ò
�� �

f = ×ò E d S
�� �

The right side of equation can be expressed as

 
i

d
dt

J d S
d E
dt

d So o+ = × + ×ò òe f e
�� �

��
�

 (11.34)

From	Stokes’	theorem

 
B d l B d S
�� � �� �� �

� × = Ñ´( ) ×òò  (11.35)

Therefore

( )Ñ´ × = × + ×
é

ë
ê

ù

û
úò ò ò

�� �� � �� �
��

�
B d S J d S

d E

dt
d Som e0

 

= +
æ

è
ç

ö

ø
÷ ×

é

ë
ê
ê

ù

û
ú
ú

òm e0 J
d E

dt
d So

��
��

�
 (11.36)

Since	surface	S is arbitrary, hence
� � �

�
∇ × = +







B J
dE
dtom e0

 

� � �
�

∇ × = +






H J
dD
dt

     [ ( )]∵
� �

D Eo= e  (11.37)

This is Maxwell’s fourth equation in differential form.

 11.6 Maxwell’s Equation in Integral Form

 1. Maxwell’s first equation in differential form is

 ∇ ⋅ =
�� ���

D r  (11.38)

  Integrating it with respect to volume V, we get

( )∇ ⋅ =∫ ∫
�� ���

D dV dV
V V

r

  The volume integral can be changed into surface integral with the help of Gauss divergence theorem as

 
Ñ×( ) = ×òò
�� ��� ��� �

�D dV D dS
V

 (11.39)
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D dS dV
V

��� �
� × = òò r

or
 

� �
� E d S

q
⋅ =∫ e0

 (11.40)

  This is the integral form of Maxwell’s first equation.
 2. Maxwell’s second equation in differential form is

 ∇ ⋅ =
�� ��

B 0  (11.41)

  Integrating second equation with respect to the volume V, we get

( )∇ ⋅ =∫
�� ��

B dV
V

0

  By Gauss’ divergence theorem

( )Ñ× = ×ò ò
�� �� �� �

�B dV B d S
V

 
B d S
�� �

� ⋅ =∫ 0  (11.42)

  where S is the surface enclosing volume V. This is the integral form of Gauss’ divergence theorem in 
magnetostatics.

 3. Maxwell’s third equation in differential form is

 
Ñ´ = -

¶
¶

�� �
��

E
B
t

 (11.43)

  Integrating the above equation over an open surface S, we get

Ñ´( ) = -
¶
¶

æ

è
ç

ö

ø
÷× ×ò ò

�� � �
�

�
E dS

B
t

dS
S S

  The	surface	integral	can	be	converted	into	line	integral	through	Stokes’	theorem	as

Therefore
 

Ñ´( ) × = × = -
¶
¶

æ

è
ç

ö

ø
÷ ×

× = -
¶

ò ò ò

ò

�� �� � �� �
��

�

�� �

�

�

E d S E d l
B

t
d S

E d l
B

S S
���

�

�� �
∵

�� �
�

¶
æ

è
ç

ö

ø
÷ ×

× = -
¶
¶

= ×
æ

è
ç

ö

ø
÷

ò

ò ò

t
d S

E d l
t

B d S

S

B
B

S

f f  (11.44)

  This	is	the	integral	form	of	Faraday’s	law	of	electromagnetic	induction.	Equation	(11.44)	is	the	integral	
form of Maxwell’s third equation.

 4. Maxwell’s fourth equation in differential form is

 
Ñ´ = +

¶
¶

�� � �
���

H J
D
t

 (11.45)
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  Integrating above equation with respect to S, we get

( )Ñ´ × = +
¶
¶

æ

è
ç

ö

ø
÷ ×ò ò

�� � � �
���

�
H d S J

D
t

dS
S S

  From	Stokes’	theorem,

( )Ñ´ × = × = +
¶
¶

æ

è
ç

ö

ø
÷ ×ò ò ò

�� ��� � ��� � ��
���

�
�H d S H d l J

D
t

d S
S S

 

H dl J d S
D

t
d S

S S

��� � �� �
���

�
� ⋅ = ⋅ + ∂

∂
⋅∫ ∫ ∫  

 
H dl i

d

dto
E

��� ���
� × = +æ

è
ç

ö
ø
÷ò e f

 ∵
��� �

fE

S

E d S= ⋅





∫  (11.46)

  Equation	(11.46)	is	the	integral	form	of	Maxwell’s	fourth	equation.	

 11.7 Physical Significance of Maxwell’s Equations

11.7.1 Maxwell’s First Electromagnetic Equation
Because of time independence, Maxwell’s first electromagnetic equation is a steady-state equation. It rep-
resents the Gauss’ law in electrostatics which states that the electric flux through any closed hypothetical 
surface is equal to 1/e0 times the total charge enclosed by the surface.

11.7.2 Maxwell’s Second Electromagnetic Equation
Maxwell’s second electromagnetic equation represents Gauss’ law in magnetostatics. It states that the net mag-
netic flux through any closed surface is zero (i.e., the number of magnetic lines of flux entering any region is 
equal to the lines of flux leaving it). It also explains that no isolated magnetic pole exists.

11.7.3 Maxwell’s Third Electromagnetic Equation
Maxwell’s third electromagnetic equation represents Faraday’s law in electromagnetic induction. It states that 
an electric field is induced in the form of close lines when magnetic flux (or lines of magnetic force) changes 
through an open surface. The line integral of induced electric field around a close path is equal to the nega-
tive rate of change of magnetic flux.

11.7.4 Maxwell’s Fourth Electromagnetic Equation
Maxwell’s fourth electromagnetic equation represents the modified form of Ampere’s circuital law which states 
that a changing electric field produces a magnetic field and an electric field can also be produced by chang-
ing magnetic field. Therefore, Maxwell’s fourth electromagnetic equation gives the new concept of generation 
of magnetic field by displacement current.

 11.8 Poynting Vector and Poynting Theorem 

The moving oscillating coupled electric and magnetic fields behave as electromagnetic waves. These waves 
are transverse in nature where electric and magnetic vectors oscillate perpendicular to the direction of 
motion.	During	propagation,	these	waves	also	transport	energy	and	momentum.	The	waves,	when	strike	
any surface, exert a pressure on the surface.
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Poynting Vector is defined as the energy transported by wave per unit area per unit time. It is denoted 
by a vector P and can be expressed by the cross product of electric and magnetic field in the following way

 
� � �
P E H= ×   or  

�
� �

P
E B

o

= ×
m

 (11.47)

The	direction	of	the	flow	of	this	power	through	unit	area	is	in	the	direction	of	propagation	of	wave.	Its	SI	
unit is Watt/m2.

Poynting	 theorem	 is	 a	 work–energy	 theorem	 of	 electromagnetics	 and	 expressed	 as	 work done on the 
charges by the electromagnetic forces is equal to the decrease in energy stored in the fields, and less than the energy 
that flows out through the surface.	To	derive	and	explain	the	Poynting	theorem,	let	us	take	third	and	fourth	
Maxwell equations as follows:

 
Ñ´ = -

¶
¶

�� �
�

E
B
t

 (11.48)

 
Ñ´ = +

¶
¶

�� ��� �
�

H J
D
t

 (11.49)

Taking the dot product of 
�

H 	with	Eq.	(11.48)	and	that	of	
�
E 	with	Eq.	(11.49),	we	have

 

� �� � �
�

H E H
B
t

× Ñ´ = - ×
¶
¶

( )  (11.50)

 

� �� ��� � � �
�

E H E J E
D
t

× Ñ´ = × + ×
¶
¶

( )  (11.51)

Subtracting	Eq.	(11.50)	from	Eq.	(11.51),	we	get

� �� � � �� ��� �
�

� � �
�

�
�

H E E H H
B
t

E J E
D
t

H
B
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¶
¶
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¶
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¶¶
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¶
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é

ë
ê

ù

û
ú - ×

t
E
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t

E J
�

�
� �

From vectors product 

 
� �� � � �� ��� �� � ���

H E E H E H× Ñ´ - × Ñ´ = Ñ × ´( ) ( ) ( )  (11.52)
Therefore,
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û
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� �
( )E H H

B
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E
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E J  (11.53)

But 
�

D = e
�
E  and 

� �
B H= m . Therefore
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+ ⋅ ∂
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Taking the volume integral over a volume V enclosed by surface S, we get

 

( ) (
� � ��
E J dV

t
H

t
E dV

V V

× = -
¶
¶
æ
è
ç

ö
ø
÷ +

¶
¶
æ
è
ç

ö
ø
÷

é

ëê
ù

ûú
- Ñ ×ò ò

1

2

1

2
2 2m e

�� ���
E H dV

V

´ò )  (11.54)

Using Gauss divergence theorem

Ñ× ´ =ò
�� � ���

( )E H dV
V

( )
� ���

� E H dS× ⋅∫
Hence,

 

� � � ���
�E J dV

t
H E dV E H dS

V V

⋅( ) = − ∂
∂

+











− × ⋅∫ ∫ ∫
1

2

1

2
2 2m e ( )  (11.55)

Equation	(11.55)	represents	the	work	energy	theorem	of	electromagnetic	and	is	called	Poynting	theorem	for	
the flow of energy in an electromagnetic field.

 1. The term ( )
� �
E J dV

V

⋅∫  represents the work done per unit time on the charges by electromagnetic 

fields.

 2. The term − ∂
∂

+









∫ t

H E dV
V

1

2

1

2
2 2m e  represents the rate of decrease of stored energy in electric 

and magnetic fields in volume V.

 3. − × ⋅∫ ( )
� ���

� E H dS represents the rate of flow of energy through surface area S enclosing volume V.

Here 
� � ���
P E H= × 	 is	 the	 energy	flowing	 through	unit	 area	 and	unit	 time	 and	 is	 known	as	 the	Poynting	

vector.

 11.9 Plane Electromagnetic Waves in Free Space 

We describe one of the important applications of Maxwell’s equations to derive electromagnetic wave equa-
tions for field vectors E


 and B


. In free space, where there is no charge or current (i.e. r = 0, 

�
J = 0,e e= 0, 

m m= 0, B H= m0  and D E= e0 ), Maxwell’s equations are as follows:

 ∇ ⋅ =
�� �

E 0  (11.56)

 ∇ ⋅ =
�� ��

B 0  (11.57)

 
Ñ´ = -

¶
¶

�� �
�

E
B
t

 (11.58)

 
∇ × = ∂

∂

�� �� �
B

E
t

m e0 0  (11.59)

Taking	the	curl	on	both	sides	of	Eq.	(11.58)	we	get

Ñ´ Ñ´ = Ñ´ -
¶
¶

æ

è
ç

ö

ø
÷
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( )E

B
t
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Ñ Ñ× - Ñ = -
¶
¶

Ñ´
�� �� �� �� ��

( ) ( )E E
t

B2

Using	Eq.	 ∇ × = ∂
∂

�� �� �
B

E
t

m e0 0  and ∇ ⋅ =
�� �

E 0
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∂
2

0 0

2

2E
E

t
m e  (11.60)

Similarly	taking	the	curl	of	fourth	equation	(11.59)	we	get
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Using Ñ´ = -
¶
¶

�� �
�

E
B
t

 and ∇ ⋅ =
�� ��

B 0  we have
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∂
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0 0

2

2B
B

t
m e  (11.61) 

In vector form 

 
∇ = ∂

∂
2

0 0

2

2

�
�

E
E

t
m e ,  ∇ = ∂

∂
2

0 0

2

2

�
�

B
B

t
m e  (11.62)

The general wave equation for any function like u moving with speed v is

 
∇ = ∂

∂
2

2

2

2

1
u

v
u

t
 (11.63)

Therefore,	from	the	above	equation,	Eq.	(11.62)	represents	wave	equations	for	E and B	in	free	space.	Each	
Cartesian component of E and B satisfies the three-dimensional wave equation.

So	 Maxwell’s	 equations	 imply	 that	 empty	 space	 supports	 the	 propagation	 of	 electromagnetic	 waves,	
travelling at a speed

m e0 0 2

1=
v

Þ = =
´ ´- -

v
1 1

4 10 8 85 100 0
7 12m e p( . )Weber/A-m)( C N-m2 2

= 2.99 ×108  m/s

Hence, electromagnetic waves propagate in free space with the speed of light:

 

c = 1

0 0m e
 (11.64)

In some other medium, velocity is given as

 

v = =1 1

0 0me m m e e( ) ( )r r

 (11.65)
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where mr and e r	are	relative	permeability	and	relative	permittivity,	respectively.	Using	Eq.	(11.64),	Eq.	(11.65)	
can be written as

v
c=

m er r

or v
c=
e r

  [For non-magnetic material mr = 1]

As we know that the refractive index n of the medium is

n
c
v

=

Therefore, 

 
n = e r  (11.66)

The speed of light in a material is always less than in vacuum because e r  has a value greater than one.

 11.10 Transverse Nature of Electromagnetic Waves

The	 electromagnetic	waves	 are	 transverse	 in	nature	where	E	 and	B	vector	oscillate	perpendicular	 to	 the	
propagation direction. To explain the transverse nature, let us have the solution of wave equations which are 
mathematically second order differential equations. The equations are

 
Ñ

¶
¶

Ñ
¶
¶

=2
2

2

2
2

2
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1
0

1
0E B- = -

c
E

t c
B

t
and  (11.67)

The general solution of these equation are respectively

� � � �
E r t E ei k r t( , ) ( )= ⋅ −

o
w  

and 
� � � �
B r t B ei k r t( , ) ( )= ⋅ −

0
w  (11.68)

where 
�
Eo  and 

�
B0 are the complex amplitudes for electric and magnetic fields, respectively, whose real part 

represent the physical value. 
�
k  is the wave vector and 

�
r  is position vector which are expressed as

�
k n

c
n

c
n

c
n= = = =

2 2 2p
l

p
u

pu wˆ ˆ ˆ ˆ
/

�
r xi yj zk= + +ˆ ˆ ˆ

n̂ is unit vector represents the wave propagation direction. Then

 
� � � � � � � �k r k i k j k k xi yj zk k x k y k zx y z x y z× = + + × + + = + +( ) ( ) ( )  
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Now considering solution E

,	we	find	the	divergence	of	Eq.	(11.56),	that	is,	∇ ⋅ =E 0.
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Since	
� �
∇ ⋅ =E 0 .	So

 
� �
k E⋅ = 0  (11.69)

or 
�
E  is perpendicular to 

�
k . Now 

�
k  has direction of wave propagation, so 

�
E  is perpendicular to the direc-

tion of propagation.	Similarly,	consider	second	equation	(11.57),
� �
∇ ⋅ =B 0. We get

 
� � � �
∇ ⋅ = ⋅B i k B( ) ⇒ 

� �
k B⋅ = 0. (11.70)

So	
�
B	is	perpendicular	to	the	direction	of	wave	propagation.	Therefore	EM	wave	is	transverse	in	nature.

 11.11 Characteristic Impedance

Consider Maxwell’s third equation

� �
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We solve it by considering E

 and B

 
as	given	by	Eq.	(11.68):	
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Hence from Ñ´ = -
¶
¶

�� ��
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E
B
t

, we have

 i k i B k B(
� � � � � �
´ ) = Þ ´ =E Ew w  (11.71)

Similarly	from	Maxwell’s	fourth	equation	
� �

��
∇ ∂

∂
× =B m e0 0

E
t

, we have
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k B E× = −wm e0 0  (11.72)

From	Eqs.	(11.71)	and	(11.72)	it	can	be	concluded	that	electric	and	magnetic	vectors	
�
E  and 

�
B  are mutu-

ally perpendicular to each other and perpendicular to the direction of propagation vector 
�
k  (see Fig. 2). 

Further	from	Eq.	(11.71)	we	have
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The mod of the above equation is
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E /H is the characteristic impedance or intrinsic impedance of free space denoted by Z0 and has the unit 
electrical resistance. Its value is

 
Z0

0

0

45 10= = =
−

−

m
e

×
×

Ω
7

128 86 10
376 7

.
.  (11.73)

This implies that electric vector 
�
E  and magnetic field vector 

�
B  are in the same phase.
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 11.12 Electromagnetic Waves in Dielectric Medium 

Since	we	are	familiar	that	there	is	no	free	charge	in	dielectric	medium	therefore,	r = 0, s = 0, and hence �
J E= =s 0. However, m and e  have	finite	values.	So	Maxwell’s	equations	are	as	follows:

 ∇ ⋅ =
�� �

E 0  (11.74)

 ∇ ⋅ =
�� ��

B 0  (11.75)
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¶
¶
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E
B
t

 (11.76)

 
∇ × = ∂
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B

E
t

me  (11.77)

Taking	curl	on	both	sides	of	Eq.	(11.76)	we	have
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Using	Eq.	(11.77)	we	have
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Similarly	taking	curl	of	Eq.	(11.77)	we	have	
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Using	Eq.	(11.76)	we	have
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In vector form 
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me  (11.78)

Equation	(11.78)	represents	wave	equations	for	E and B in dielectric medium.

 11.13 Electromagnetic Waves in Conducting Medium 

In conducting medium, the charge given to material is always lie at the surface and no charge stay inside 
the conducting material, hence charge density r =	0.	So,	for	a	conducting	medium	Maxwell’s	equations	are	
as follows:

∇ ⋅ =
�� �

D 0

∇ ⋅ =
�� ��

B 0
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Ñ´ = -
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Ñ´ = +
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H J
D
t

In conducting medium 
�

D = e
�
E , 

� �
B H= m , 

� �
J E= s , where s  represents the conductivity of the isotropic 

and homogeneous medium. Thus, Maxwell’s equations reduced to

 ∇ ⋅ =
�� �

E 0  (11.79)

 ∇ ⋅ =
��

B 0  (11.80)
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 (11.81)

 
∇ × = + ∂
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B E
E
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m s e� � (11.82)

To	derive	wave	equation	in	conducting	medium	take	the	curl	on	both	sides	of	Eq.	(11.81),	we	get
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Substituting	the	value	of	∇ ×
�� ��

B from	Eq.	(11.82)	in	the	above	equation,	we	get
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Since	 ∇ ⋅
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B = 0 is from Maxwell’s first equation, we have
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E

E
t

E
t

ms me  (11.83)

Similarly,	we	can	obtain	wave	equation	for	B	by	taking	curl	of	Eq.	(11.82)	and	using	Eq.	(11.80)	as

 
∇ − ∂

∂
− ∂

∂
=2

2

2 0B
B
t

B
t

ms me  (11.84)

The above equations are wave equations in conducting medium. If we take s  = 0 and permeability and per-
mittivity for free space, the above equations will be for free space. In conducting medium, the wave vector k 
is a complex and the real part of it determines the physical values of wave such as wavelength and speed of 
wave. The imaginary part of wave vector results in an attenuation of wave (decreasing amplitude of E and B 
with depth of penetration in medium). Here unlike in free space, the electric and magnetic field vectors are 
no longer in phase, rather magnetic field lags behind the electric field (Fig. 3).
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Figure 3 Phase-diagram	of	electric	and	magnetic	field	vectors.

 11.14 Skin Depth

Skin	depth	is	an	essential	parameter	for	the	wave	when	the	electromagnetic	waves	penetrate	in	conducting	
medium. It is the depth in conducting medium in which the strength of electric field is reduced  1 e times of its 
original values.

The skin depth is frequency dependent for good conductor and frequency independent for poor con-
ductor. Consider the solution of wave equation (11.83) as

E r t E eo
j k r t( , ) .= −( )w

where k  is complex and can be expressed with real and imaginary term a  and b  respectively as k j= +a b . 
Now if wave is moving along z direction with E vector parallel to x, then E will be

E z t E ex ox
j j z t( , ) ( )= + −( )a b w

or E z t E e ex ox
z j z t( , ) = − −( )b a w

 
the attenuation factor is e z−b . Ex  should be (1/e) times its original value if bz = 1. In this case z, the depth 
in the medium becomes skin depth and is denoted by d as shown in Fig. 4. Hence, 

 
z = =d

b
1

 (11.85)

0 1 z

= 0.368
d

1.0

E

1
e

Figure 4 Skin	depth.
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The value of a and b  can be obtained with wave equation

∇ − ∂
∂

− ∂
∂

=2
2

2 0
�

� �
E

E
t

E
t

ms me

and its solution

E z t E ex x
j j z t( , ) [( ) ]= + −

o
a b w

which will be

 

a w me s
w e

b w me s
w e

= +
æ

è
ç

ö

ø
÷ +

é

ë
ê
ê

ù

û
ú
ú

= +
æ

è
ç

ö

ø
÷ -

2
1 1

2
1

2

2 2

1 2 2

2 2

1 2/ /

; 11
é

ë
ê
ê

ù

û
ú
ú

 (11.86)

For good conductor s ew�( ), Hence

b w me s
we

= æ
è
ç

ö
ø
÷2

or b msw=
2

Thus, skin depth

d
b msw

= =1 2

 
(11.87)

In terms of frequency ( f ) skin depth will be

 
d

p ms p ms
= =2

2

1

f f
 (11.88)

From	Eq.	(11.88),	we	can	conclude	that	skin depth or penetration depth is inversely proportional to the root of 
frequency of wave.

For poor conductor s ew�( )

b w me s
w e

= +






−










2
1

1

2
1

2

2 2

or  b w me s
w e

= ×
2

1

2

2

2 2

or  b s m
e

=
2

Thus, skin depth

d
b s

e
m

= =1 2

 
(11.89)

From the above equation, we can conclude that skin depth or penetration depth is independent of frequency 
of wave.
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  Solved Examples

Example 1

Prove	that	electromagnetic	waves	propagate	with	speed	of	light.	

Solution: The wave equations for E

 and B


 in free space are as follows:

∇ = ∂
∂

2
0 0

2

2

�
�

E
E

t
m e ,  ∇ = ∂

∂
2

0 0

2

2

�
�

B
B

t
m e

In vacuum, then, each Cartesian component of E and B satisfies the three dimensional wave equation. 
Hence

∇ = ∂
∂

2
2

2

2

1
u

v
u

t

So	Maxwell’s	equations	imply	that	empty	space	supports	the	propagation	of	electromagnetic	waves,	travel-
ling at a speed

m e0 0 2

1=
v

⇒ = =
× ×− −

v
1 1

4 10 8 85 100 0
7 12m e p( . )Weber/A-m)( C N-m2 2

= 2.99 × 108 m/s

Hence, electromagnetic waves propagate with the speed of light:

c = 1

0 0m e

From this result we can conclude that light is an electromagnetic wave.

Example 2

Prove	that	the	speed	of	light	in	a	material	is	always	less	than	that	in	vacuum.

Solution:  We know that in vacuum material travels with velocity of light. In some other medium, 
velocity is given as

v = =1 1

0 0me m m e e( ) ( )r r

where mr  and e r 	are	relative	permeability	and	relative	permittivity,	respectively.	Since

c = 1

0 0m e
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therefore
v

c
=

m er r

or v
c

=
er

  [For non-magnetic material mr = 1]

The speed of light in a material is always less than that in vacuum because e r  has a value greater than one.

Example 3

Determine	refractive	index	and	velocity	of	light	if	the	relative	permittivity	of	distilled	water	is	64.

Solution: The velocity of distilled water is given by 

v
c

=
m er r

where mr  = 1, c = 3 × 108 m/sec and e r  = 64. Therefore

v =
´

= ´
3 10

64
3 75 10

8
7. m/s

As we know, the refractive index n of the medium is n c v= / . Therefore, 

n = = =e r 64 8

Example 4

A uniform plane wave having electric field intensity in air as 7 × 103 V/m in the y-direction is propagating 
in the x-direction at a frequency of 2 × 108	rad/sec.	Determine	the	frequency,	wavelength,	time-period	
and amplitude of H.

Solution: We have
Ey = 7 × 103 cos (2 × 108t – px)

Here w = 2 × 108rad/sec, m p e0
7

0
124 10 8 85 10= ´ = ´- -Weber/A-m C N-m2 2, . . Now frequency is  

given by

u
p

= = ×
×

=w
2

2 10

2 3 14

8

.
318.5 × 105 Hz = 3 18 107. ×  Hz

Wavelength is given by

l n
u

= = ×
×

=3 10

3 18 10
9 43

8

7.
. m
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Time period is given by

l
u

= =
×

= × −1 1

3 18 10
3 14 107

8

.
.

 
sec

Amplitude of H is

E
H

E

H
= = = ≈0

0

0

0

376 77 377
m
e

. Ω

⇒ H = × =7 10

377

3

18.56 A/m

Therefore  

Hz = 18.56 cos (2 × 108 t – px)  

Example 5

If the magnitude of E in a plane wave is 377 V/m, determine the magnitude of H for a plane wave in free 
space.

Solution:  We have 
E

H
= =

m
e

0

0

377 Ω ⇒ = =H
377

377
1A/m

Example 6

A parallel-plate capacitor with circular plates of radius a = 0.055 m is being charged at a uniform rate so 
that the electric field between the plates changes at a constant rate

∂
∂

= ×
�
E
t

1 5 1013. V/m/s

Determine	the	displacement	current	for	the	capacitor.

Solution: The displacement current density between the plates of the capacitor is

J
D
t

E
tD

�� � �
=
¶
¶

=
¶
¶

e0

Displacement	current	

I a J a
E
t

D D

� � �
= =

¶
¶

( )p p e2 2
0

Here
∂
∂

= ×
�
E
t

1 5 1013. V/m/s , a = 0.055 m and e0
128 85 10= ´ -. C N-m2 2

Displacement	current	
I a

E
t

D

� �
=

¶
¶

=p e2 0 1 3.  A
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Example 7

A lamp radiates 500 W power uniformly in all directions. Calculate the electric and magnetic field inten-
sities at 1 m distance from the lamp.

Solution: As	we	know	Poynting	vector
� � ���
P E H= × is the energy flowing through unit area and unit 

time. Now

Area = 4 4 1 42 2p p pr = =( ) m2

Now �
P = 500

4p
 Joule/m2/sec

or EH = 500

4p
 

But we know that 
E

H

E

H
= = = ≈0

0

0

0

376 77 377
m
e

. Ω

So	 E H= 377 . Multiplying both sides by H and using the value of EH we get

377
500

4
2× =H

p
⇒ =

×
H 2 500

4 377p
⇒ =H 2 0 105.

⇒ H = 0.33 A-turn/m 
Now 

EH = 500

4p
⇒ =

×
=E

500

4 0 33
120 63

p .
. V/m

Example 8

Earth	receives	2	calories	of	solar	energy	per	minute	per	cm2 as an average over a year for whole surface. 
What are the amplitudes of average electric and magnetic field radiation?

Solution: The energy received by an electromagnetic power flow is given by  
� � ���
P E H= ×

⇒ = × × =
�
P

2 4 2 10

60
1400

4.
Joule/m /s2

Now P = EH.	So EH = 1400. But we know that 

E

H

E

H
= = = ≈0

0

0

0

376 77 377
m
e

. Ω

So

E
E

E E× = ⇒ = ⇒ =
377

1400 527240 726 12
avg A-turn/m.
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Similarly	 Havg can be calculated as

H
Eavg = 1400

⇒ =Havg A-turn/m1 928.

The amplitudes are calculated using the following expression:

E E0 2 1 414 726 1 1026 7= = × =avg A-turn/m. . .

Similarly	 H0 2 726= . A-turn/m.

  Short Answers of Some Important Questions

 1. How was the idea of electromagnetic waves 
conceived?

  Answer: Faraday’s law suggests that a time-varying 
magnetic field produces an electric field while 
Ampere’s law shows that a time-varying electric 
field produces a magnetic field. Using this fact, 
Maxwell showed that if either of the electric or 
magnetic field changes with time, a field of another 
kind is induced in the adjacent space and produces 
waves which are called electromagnetic waves.

 2. What do you understand by electromagnetic 
waves?

  Answer:	Electromagnetic	waves	consist	of	chang-
ing electric and magnetic fields. The electric and 
magnetic components of plane electromagnetic 
wave are perpendicular to each other and also 
perpendicular to the direction of the propaga-
tion. These waves propagate in space from one 
position to another even in absence of material 
medium.

Example 9

Calculate the skin depth for a frequency of 1020 Hz for silver if m p s0
7 74 10 3 10= × = ×− Weber/A-m S/m, .

Solution: We know that

d
msw

= =1 2

k

Given that m p s0
7 74 10 3 10= × = ×− Weber/A-m S/m,  and w p= =2 1020f .	So

d
p p

= =
× × × × ×−

1 2

4 10 3 10 2 107 7 20k
= 0.091 × 10−10 m  
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 3. Write down some properties of electromagnetic 
waves.

  Answer: The properties of electromagnetic waves 
travelling through free space are as follows:

  1.	 	Electromagnetic	waves	travel	with	the	speed	
of light.

  2.	 Electromagnetic	waves	are	transverse	waves.
  3.  The ratio of electric to magnetic field in an 

electromagnetic wave equals the speed of 
light.

  4.	 	Electromagnetic	 waves	 carry	 both	 energy	
and momentum.

 4. Give some examples of electromagnetic waves.
  Answer: Radio waves, light, X-rays, g -rays, etc. 

are the examples of electromagnetic waves.
 5. What is displacement current?
  Answer: The rate of change of electric displace-

ment vector with time is known as displace-
ment current. In other words, one can say that 
the displacement current is the current arising 
due to time-varying electric field between the 
plates of the capacitor.

 6. What is the role of displacement current in 
electromagnetics?

  Answer: On the basis of displacement current, 
the symmetry character of electric field and 
magnetic field is more prominent. With the 
introduction of current density, a changing 
electric field is now seen to produce magnetic 
field just as a changing magnetic field gives rise 
to electric field. Thus, higher degree of sym-
metry of electric and magnetic field is more 
satisfactory. Also on the basis of displacement 
current, both steady and non-steady current 
circuits may be analyzed as well as all the varia-
tions in AC circuits with a capacitor can be 
easily understood.

 7. Differentiate	between	conduction	current	and	
displacement current.

  Answer:
  1.  Conduction current is due to the actual 

flow of current in a conductor while 

 displacement current is the result of time-
varying electric field in a dielectric.

  2.  Conduction current density is the product 
of electrical conductivity and electric field; 
however, displacement current density is 
the rate of change of electric displacement 
vector with time.

  3.  Conduction current obeys Ohm’s law while 
displacement does not obey Ohm’s law.

 8. Write down Maxwell’s equations in dielectric 
media.

  Answer: In dielectric medium there is no free 
charge.	So	s  = 0, J  = 0 and r = 0. Therefore, 
Maxwell’s equations are as follows:

∇ ⋅ =
�

D 0 ; ∇ ⋅ =B
��

0

∇ × = − ∂
∂

�
�

E
B
t

; ∇ × = ∂
∂

H
D
t

���
�

 9. Show	that	
� �
E B c/ = , where c is the velocity of 

electromagnetic wave.
  Answer: We know that

� � �
k E wB× =

  Since	 we	 have	 already	 discussed	 that	 electric	
field vector is perpendicular to the direction of 
propagation, so

� � �
k E wB⋅ =

  or 

�
� �E

B

w

k
= = =2

2

pn
p l

nl
/

  or 

�
�E
B

c= [ ]∵c =nl

 10. What	is	Poynting	vector?
  Answer: 

� � ���
P E H= × is the energy flowing 

through unit area and unit time and is known 
as	the	Poynting	vector.	It	is	also	called	the	flux	
vector.	The	SI	unit	of	Poynting	vector	is	Wm−2.
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  Important Points and Formulas

 1. With the change in electric and magnetic field 
with time, a field of other kind is induced in the 
adjacent space which produces electromagnetic 
waves consisting electric and magnetic fields.

 2. Maxwell formulated the concept of displace-
ment current to remove the inconsistency in 

Ampere’s law by adding the term J
D
tD

�� �
=
¶
¶

.

 3. The current arising due to time-varying electric 
field between the plates of a capacitor is called 
the displacement current.

�
J

dE
dtd = e0

 4. The equation of continuity is based on the con-
servation of charge.

 5. Electromagnetic	 waves	 propagate	 with	 the	
speed of light

c = 1

0 0m e

 6. The speed of light in a material is always less 
than in vacuum because e r  has a value greater 
than one.

 7. According	 to	 Poynting	 theorem,	 the	 rate	 at	
which electromagnetic energy in a finite 
volume decreases with time is equal to the rate 
of dissipation of energy in the form of joule 
heat plus the rate at which energy flows out of 
the volume.

 8. 
� � ���
P E H= × is the energy flowing through unit 
area	and	unit	time	and	is	known	as	the	Poynting	
vector.	It	is	also	called	the	flux	vector.	The	SI	
unit	of	Poynting	vector	is	Wm−2.

 9. Skin	depth	is	the	depth	in	conducting	medium	
in which the amplitude of the electromagnetic 
wave is reduced (1/e) times of its original value.

 10. The skin depth is frequency dependent for 
good conductor and frequency independent in 
poor conductor.

  Multiple Choice Questions 

 1. Displacement	current	is	due	to
 (a) displacement of electric charges
 (b) time varying magnetic field
 (c) time varying electric field
 (d) Both (b) and (c)
 2. Equation	of	continuity	is	based	on
 (a) conservation of charges
 (b) conservation of momentum
 (c) conservation of angular momentum
 (d) None of these
 3. Time varying electric field in the region 

between the plates is equivalent to
 (a) conduction current 
 (b) displacement current
 (c) Both (a) and (b) 
 (d) Neither (a) nor (b)
 4. Who observed that a time varying magnetic 

field gave rise to an electric field.
 (a) Maxwell (b) Ampere 
 (c) Oersted (d) Faraday

 5. Poynting	theorem	represents
 (a) conservation of charges 
 (b) conservation of momentum 
 (c) conservation of energy 
 (d) None of these
 6. Maxwell observed and corrected a discrepancy in
 (a) Ampere’s Law 
 (b) Faraday’s Law
 (c) Gauss Law for electrostatics 
 (d) None of these
 7. According to maxwell’s equation in free space; 

∇ ⋅ =E ?

 (a) r  (b) 0

 (c) r e/ o  (d) 
e
r

0

 8. In a conducting medium, the electromagnetic 
waves are.

 (a) amplified  (b) attenuated 
 (c) both (a) & (b) (d) None of the these

Chapter 11.indd   238 4/14/2015   8:33:38 AM



numERiCAl PRoblEms •  239

 9. Energy	density	in	electric	and	magnetic	field	is
 (a)	 Different	 (b) 1.5 
 (c) L/C (d)	 Same
 10. The wave velocity in non-conducting medium 

is

 (a) 
1

me

 (b) m e/  

 (c) 
m
e

0

0

 (d) 
1

m e0 0

 11. The characteristic impedance of free space is
 (a) 0 (b) 1
 (c) 377 (d) None of these

  Short Answer Type Questions 

 1. What do you understand by electromagnetic 
waves?

 2. What are Maxwell’s equations?
 3. What do you mean by displacement current?
 4. Differentiate	between	conduction	current	and	

displacement current.

 5. What is current density?
 6. Write down Maxwell’s equations for free space.
 7. What	is	Poynting	vector?
 8. What do you understand by impedance?

  Long Answer Type Questions 

 1. Explain	the	concept	of	Maxwell’s	displacement	
current and show how it led to the modifica-
tion of Ampere’s law.

 2. Derive	Maxwell’s	equations.	Explain	the	physi-
cal significance of each equation.

 3. Derive	the	electromagnetic	wave	equations	in	
vacuum. Hence show that the waves travel at a 
speed of light.

 4. Derive	Poynting	theorem.	Explain	each	term.
 5. Prove	 that	 electromagnetic	 waves	 propagate	

with speed of light. 

  Numerical Problems

 1. Determine	refractive	index	and	velocity	of	light	
if the relative permittivity of distilled water is 81.

 2. A uniform plane wave has electric field intensity 
in air as 7500 V/m in the y-direction. The wave 
is propagating in the x-direction at a  frequency 
of 2 × 109	 rad/s.	 Determine	 the	 frequency,	
wavelength, time-period and amplitude of H.

 3. If the magnitude of E in a plane wave is 
455  V/m, determine the magnitude of H for a 
plane wave in free space.

 4. A parallel-plate capacitor with circular plates 
of radius a = 0.55 cm is being charged at 
a  uniform rate so that the electric field 
between the plates changes at a constant rate 
∂
∂

= ×
�
E
t

1 5 1013. V/m/s.	Determine	the	displace-

ment current for the capacitor.
 5. A lamp radiates 400 W power uniformly in all 

directions. Calculate the electric and magnetic 
field intensities at 1.5 m distance from the lamp.
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Numerical Problems

 1. 9, 3.33 × 107 m/s 
 2. 3 18 108. ×  Hz, 0.94 m, 3 14 10 9. × −  s and 

19.89 A/m 
 3. 1.21 A/m 

 4. 1.3 × 10−2 A 

 5. 796.18 V/m and 0.04 A-turn/m

  Answers

Multiple Choice Questions

 1. (c)
 2. (a)
 3. (b)

 4. (d)
 5. (c)
 6. (a)

 7. (b)
 8. (b)
 9. (d)

 10. (a)
 11. (c)
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