INTRODUCTION TO
QUANTUM MECHANICS

“ Anybody who has been seriously engaged in scientific
work of any kind realises that over the entrance to the gates
of the temple of science are written the words : "Ye must
have faith. * It is a qual:ty which the scientist cannot
dispense with”

~ Max Planck

i INTRODUCTION

Until the advent of quantum mechanics till late nineteenth century, many
physicists bélieved that they had made great progress in physics and there was not
much more that needed to be discovered.

Atthat time the classical phyﬂ@_was widely accepted. However, by the early
20th century, physicists discovered that the laws of classical mechanics break down
in the atomic wc world. As a result, new laws of physics appllcable to the atomic world
were developed These were referred to as quantum mechanics. In quantum

mechanics, partlcles have wave-like pr Eegl_e.,s_gnxexned by a partlcular wave
equation called the Schrodmger wave equation.
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Timeline of Quantum Mechanics

1900 : -Max Planck suggested that the radiation is quantised i.e., it comes in
integral multiple of the quantity to explain the blackbody radiation.

1905 : Albert Einstein stated that light, which has wave-like properties also

consists of discrete qu antised bundles of energy called photons.

1913 : Neil Bohr stated that electrons in atoms have wave-like properties
and constructed a theory of atomic structure based on quantum idea.

1924 : Louis de-Broglie suggested that all particles are associated with waves.
This leads to wave particle duality.

1925 : Werner Heisenberg formulated matrix mechanics, the first version of
quantum mechanics.

1926 : Erwin Schrodinger formulated a version of quanmmmechmbamd
on waves. He wrote down the so called Schrodinger wave equation
that governs how the waves evolve in spacé and time.

1926 : Max Planck gave the probability interpretation of quantum mechanics.

1927 : Paul Dirac combined quantummechamcsand spemalﬂ:eory
o relativity to describe electron. ,3 s

#20 SCALE OF QUANTUM PHYSICS

(Classical Physics deals with macroscopic phenomena where a certain number
of dynamical variables are associated with physical system and each of these
dynamical variables posses a well defined value at each instant. In Classical
mechanics, most'of the effects are directly observable with simple instruments. The
évaluation of a physical system in time is entirely determined in Classical Physics,
if it§ state at a given initial instant is known. Classical Physics progressed towards
greater simplicity after the formulation of rational mechanics by Newton because
during that entire period, no experimental fact or discovery led to any doubt
concerning its correctness. However, by the early 20th century, with the discovery
of various phenomena like radioactivity, X-rays, photoelectric effect etc, it became
clear that the phenomena on atomic or subatomic scales (length scale of the order
of 10~® cm) do not fit into the frame of Classical Physics and their explanation is
based upon entirely new principles. It was also found that the dynamical variables
like energy and momentum take only discrete values in different states of an atom
in microscopic world rather than continuous values expected according to Classical
Physics. These new concepts led to the development of a new mechanics known as
Quantum Mechanics, which could satisfactory explain many observed facts in
microscopic world.
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Quantum mechanics developed in two stages. In 1900, Max Planck’s hypothesis
was the beginning of Ist stage. This theory was semiclassical and was not completely
satisfactory. Then the second stage began when Erwin Schrodinger developed wave
mechanics in 1926.

FL "r‘a

FAILURES OF CLASSICAL MECHANICS

: 4 Stability of the Atom

Through his famous a-particle scattering experiment, Rutherford established
that there is a small, heavy positively charged region present in the centre of the

atom, whic};i‘g:n/eﬂl;dmucleus and negatively charged light electrons surrounding
this nucleu the basis of classical theory, for the system to be stable, these

negatively charged electrons should revolve continuously aro_und thepositively
“charged nucleus. But an electron durmg its revolution undergoes-a change in the
“direction of its velocity at every instant of its motion.and therefore, it is

continuously accelerated. According to electrodynamics, energy is radiated

continuously in the form of electromagnetic radiations by an accelerated charged
particle. So, the revolving electron must emit radiations and therefore, its energy
must continuously decrease thus leading to a dectrease in the radius of the orbit.
This means that electron must follow aspiral path around the nucleus and ultimately
it must fall inside the nucleus after losing its entire energy. Thus, the atom must
collapse after short duration according to classical mechanics, but it is not so. The
atom is a stable structure. So, classical mechanics could not explain the stability of
the atom. R l

- Line Spectrum of Hydrogen Atom A - 'h. )’13 :

According to classical mechanics, the electron revolving around the nucleus
can have any energy and thus, electromagnetic radiations of all the wavelengths
can be emitted by an excited hydrogen atom i.e., the spectrum of hydrogen is -
expected to be continuous on the basis of classical mechanics. But it was observed
experimentally that hydrogen spectrum contains certain well defined bright lines.
Thus, the line spectrum of hydrogen could not be expﬁmélj&_l 1931 echamcs

WC,

W88 Black Body Radiation [ B“f AMer

An object that can absorb the electromagnetic radiations of all the wavelengths
incident on itis called an ideal black body. The black body at thermal equilibrium,
emits the radiations distributed over a continuous range of wavelengths, that is
dependent only on the temperature of the black body.
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The spectral variation of emitted
energy with wavelength at different

temperatures is shown in fig. 1.1.
This curve shows that energy is

not uniformly distributed but there is

a peak in the radiation spectrum at a

particular wavelength that is

proportional to temperature. As the

temperature increases, this peak shifts

towards lower wavelengths. 1500 K

Wavelength —»

A number of attempts were Eig. 1.1
made in order to explain the origin of

Energy —»

continuous black body radiation spectrum. Rayleigh and Jeans in©1900 tried to
explain this spectrum with the help of classical thermodynamics and
electromagnetism and they gave the following expression for radiated energy
density u, emitted at absolute temperature T in the wavelength range A to A + di

from black body: \r

8mn
u, dh = — kT dA wkilsd)
7\.4 \/

where k is Boltzmann constant afd it has a value equal to 1.38 x 1072 JK.

According to eqn.(1.1),as A =0,
the energy density should become
infinite but it was.in complete 4
disagreement with the experiment
aceording te which, the energy density
should be finite. Then, Wein also tried
to explain the variation of emitted
energy density (in the wavelengths
range A to A +dA) with wavelength and
on the basis of classical theory, he
derived the following expression for Wavelength —»
the energy emitted in wavelength
range from A to A + dA by assuming that
oscillators emitting radiations are of
molecular size. The expression is

Experimental

Energy —bp

Fig. 1.2

u)‘- d;\. = BEhC —flCi’?LkT dl ."(1'2)
l
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It was found that this equation could explain the experimental curves only in

low wavelength regions.butifailed in high wavelength regions,

So, on the basis'9f€lassical theory, a single relation could not be derived that
could explainthe energy distribution in a black body spectrum over the complete
rangeof waveléngths.

In ‘addition to the above mentioned drawbacks, some other drawbacks of
classical mechanics, are as follows :

e Itcould notexplain the origin of discrete spectra of atom since according to
classical mechanics the energy changes are always continuous. This
difficulty was later on resolved by Bohr to some extent.

e The classical mechanics could not explain a large number of observed
phenomenon like photoelectric effect, Compton eff_ect, Raman effect etc.

e Specific heat of solids and their variation with temperature could not be
explained by classical theory. '



{86l dE-BROGLIE HYPOTHESIS- DUAL NATURE OF MATTER

Light exhibits the phenomena of interference, diffraction, polarisation,
photoelectric effect, Compton effect etc. The phenomena of interference, diffraction
and polarisation could be explained only on the basis of wave theory of light. This
means that light possesses wave nature. While on the other hand, the phenomena
of photoelectric effect and Compton effect could only be explained on the basis of
quantum theory of light, according to which light consists of di

energy hv, known as phztt.cyhese photons behave like This means
that light possesses partiefe nature. Thus, light is said to ualnature i.e.,

wave nature as well as particle nature. This dual characteristic property of light is
known as ‘Dual Nature of Light.’

Louis de-Broglie in 1924, proposed that the matter should also exhibit dual
nature like light. He argued that if radiation can act like:a wave sometimes and like
particle at other times, then things like electrons shiould also exhibit wave properties,

e
under appropriate conditions. The experiments such as those in which — of material
m

particles in measured, illustrate the particle nature of matter.

According to de-Broglie, amoving material particle has some wave properties
associated with it, The waves associated with these moving material particle are
called matter waves or de-Broglie waves. de-Broglie gave an expression for the
wavelength of matter waves and it was experimentally verified by Davisson and

Germer in'1927 and by G.P. Thomson in 1928. p

de-Broglie Wave Equation : To find the wavelength of waves associated with
a moving material particle, let us consider a photon of frequency v. According to
quantum theory, the energy of this photon is given by

E=hv .(1.31)
where h is Planck’s constant.



O oo e

If photon is assumed to be aParbicle of mass m, then its energy

-

Emnc” (132
From eqns (1.31)and"(1.32), we get hv = mc?
hv h
r Mme= — = —
( c A -
c
Beeause A = " is wavelength of radiation, therefore,
)= b 1
=N 7 ...(1.34)

where p = mc is the momentum of the photon.

Louis de-Broglie argued that the wave character is also associated with all
particles in motion and the wavelength of wave associated with them is given by

h h

e (135 !

where m is the mass and v is the velocity of moving particle respectively.

The eqn. (1.35) is called de-Broglie wave equation and % is known as
de-Broglie wavelength:



- de-Broglie Wavelength of Accelerated Charged Particle

Consider a charged particle, whose charge is g and it is accelerated under a
potential difference’of V volts, then energy acquired by this charge is gV. This
energy must be‘equal to the kinetic energy of charge, when initially it was at rest.

1 2

Thus qV=—2-mv ,

where m is the mass and v is velocity of accelerated charge.



27V
V=

m

Hence, the momentum of accelerated charge is given by

p =muv

2qV
or p=m 9 =4/2mqgV

m

h
de-Broglie wavelength of accelerated charge, A = ;

h
or A= W 3 ..(1 .47)

For electrons : m=9.1x10"" kg v/
g=1.6% 10 C
h=6.62x10#]s

1227 x10" 1% m

A=
SO, ﬁ

_ 12274
JV
When a material particle is in thermal equilibrium at temperature T, then

they have Maxwellian-distribution of velocities and the kinetic energy of each
particle,

or A ..(1.48)

E=kT ..(1.49)
wherek is Boltzmann's constant having value equal to 1.38 x 1072 J /k.

S0, using eqn. (1.46), de-Broglie wavelength of a material particle at
temperature T is

h
A= W/ ..(1.50)
BB Experimental Verification of Wave-Particle Dualism

Davisson and Germer in 1927 and G.P. Thomson in 1928 confirmed the wave
properties of matter e}perimentally '
1. Davisson and Germer’s Experifnent : In 1927, two American Physicists

Davisson and Germer first of all predicted electron waves experimentally proposed
by de-Broglie.
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Hence, a wave packet is a type of wave motion in which the ampll’tudq'
the wave is very large in a small region and negligibly small in the rest of ty
space. The span of a wave packet is finite. The velocity of the wave packet
determined, comes out to be equal to the velocity of material particle. Ty,
probability of tinding the particle is maximum where amplitude of the way,
packet is the largest.

I8 GROUP VELOCITY

(.ﬂ(lp velocity is the velocity, with which a wave packet i.e., a group of wayey
moves. It is also defined as the velocity with which the centre of mass of slowing |
varying envelope (representing the wave packet) moves in 2 medium
The significance of group velocity is that this is the velocity with Whachm
contained in the wave packet is transmitted. \

Expression for Group Veloctiy : Consider a group 6f wawes consisting
only two components of equal amplitude and having frequencies ©, and ®,
differing by a small amount. Let these waves be regf@eﬁted by wave function of
amplitudea i.e.,

Y, =4acos (mlt -k‘f;ﬁ f _ (159

Y, = aeos (@t —ks¥) .-(1.60)
2n i Sl _ ;
where k, = — and k, = —are’wave vectors or propagation constants of two

Ay N\ A2

superimposing waves. Here —-and f represent their respective phase (wave)
\ 1 2

{welotities. Let us assume that —Lz—2 je,itisa dispersive medium. The

‘ ko ky
"wave function, due to superposition of the two waves, can be written as
V=, ..(1.61)
or y =4 [cos (ot - k;x) + cos (wyt - k)]
or V= 2a cos [M]t—(k'+k2}' cos (u]r— Bk
2 2 2 2
. ['.'msA+msB=2cosA+BCOSA-BJ
2 2
Awt Akt
or v = 2a cos (qt - kx) cos e
1
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'!‘I + ‘l‘:! k] { k?
= - 3 ,.‘t - 2 :,Am?nll ‘(rlyﬂﬂd Ak"kl' k7
s

here

Aw Ak

iy

\ = 2008

-

cos (ot - kx) (1.62)

The graphical representation of eqn. (1.62) is shown in fig. 1.15 (a).

[:2acos(A—{2—l-9—k-fH
2 2
4

qx

Fig. 1.15 (a) : A modulated wave of angu].a.t quq © and wave vector k
The phase and group velocity can be expressed from egn. (1.62) as follows :
(a) A wave of frequency o, wave vector k has a velocity relation as

21tV

(.O-h-
% i_ 27
A

=VA

This is the phase velocity or wave velocity.

Aw
(b) A'second wave of frequency - propagation constant ) and group
loci Aw
v =-—
elocity v, AL

It consists of a group of waves of first type and is a very slowly varying

(moving) envelop of propagation constant 3 and frequency -ECE . This envelope

is represented by the dotted curve in fig. 1.15(a). The velocity v ; is-called group
velocity or the velocity of wave group. If Aw and Ak are very small then

dw : Aw
o =bim(5) A




- Relaiidn b\etw76roup Velocity (v,) and Particle Velocity (v)
'lﬁ

We know th e Sy Gk 1.65) [ E= h oo and |
e know tha Ug_dk_d(hk)hdp ...(1.65) ['"E=hw an p=hkl

2

(1) For non-relativistic particle, E = Zﬂm_

_dE_Zp_p__mv_

(¥

- v 1.66) |
S dp 2m m m LLo6)

.e., group velocity of wave packet is equal to the velocity of the particle itself in

non7eﬁtivistic case.



Relation between Phase Velocity (v ) and Group Velocity (v‘)
for Non-Relativistic Free Particle . .- .

2

For non-relativistic free particle, E = _ZP; ;
F 1.68 h L P’
rom eqn. (1.68), we have v, . ” = 2m.p
p mv v
o T 2m 2m 2
But b= [From eqn. (1.66)]
b
Up = -'2— (170)

®
Now, v, = —k-
W= vp.k
do d
But v, =—= -—-(vpk)
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dvp
or US = UP + K —‘;’?—
27
Also K=—
A

or 7l e

(1.71)

(1.72)

Eqn. (1.72) gives the relationship between group velocity and phase velocity.
\/l. case of non-dispersive medium, v, does not depend on k and therefore

dvp
E =0 and U, =7,



5. HEISENBERG’S-UNCERTAINTY'PRINCIPLE

/f

According to classical mechanics, a moving particle occupies a definite
position in space and it has a definite momentum. Both its position as well as
momentum can be measured simultaneously and accurately or we can say that

the motion of a classical particle is described by a sharply defined trajectory.
b .
But Heisenberg pointed out that when a moving particle is represented as a

wave packet, then there is a fundamental limit to the accuracy with which the
particle properties can be measured. The position of the particle is uncertain within
the size of the wave packet because the particle can be present anywhere within
the wave packet. Also, the wave packet has a velocity spread. Hence, the velocity
or momentum of the wave packet is also not known with certainty. 56, it is
impossible to measure the position and momentum of a particle simultaneously
and precisely i.e., the trajectory of a quantum particle is not sharply defined.

;Hﬁnberg uncertainty principle states that “it is irmpossible to measure accurately
and simultaneously both the position of a partgcle aleng a particular direction
(say x-axis) and momentum of the particle in the samedirection, p . If Ax is uncertainty in
the measurement of position along x-direction and Ap, is uncertainty in the

measurement of momentum in‘the same direction, then the product of these two
!

uncertainties is of the orderof A = -2"; ie.,

Ax. Ap,~ h (1.74)

where h is Planck’s constant.

Similarly, Ay.Ap, = h‘ and Az.Apz= h #({1:/3)

Thus, if value of Ax is smaller, then value of Ap, will be more. The relations
given by eqns (1.74) and (1.75) are known as position-momentum uncertainty

relatiot/

Heisenberg’s uncertainty relation is universal and is applicable to all the
pairs of cannonical conjugate variables, whose product has dimensions of action

(joule-sec). e.g., position and momentum, energy and time, angle and angular
momentum etc. ’

-
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’ Energy-Time Uncertainty Relation
A If AE is the uncertainty in the determination of energy of the system and Atjg

the uncertainty in measurement of time to which this determination refers, they |

AEAt = h A1.76) §

Eqn. (1.76) is known as energy-time uncertainty relation. This eqn. shows
that energy of the particle will be poorly defined if the time for which the system i
remains in a particular energy state is short and if the time of stay.islong, then the
energy will be more defined.

If A] is the uncertainty in the measurement of angular momentum and A8 is
the uncertainty in the measufement of angular displacement, then the product of

these two uncertainties is.of the otder of # i.e.,

e

Angular Displacement and Angular Momentum Uncemimy
Relation ,

- '.‘

S e AT o AT

AJ. AB = h ...(1.77) §
Eqn.|(1.77)is known as angle-angular momentum uncertainty relation.
The exact statement of Heisenberg’s uncertainty p:Efiple is “The product of the
uncertainties involved in measurement of any pair of cannonical conjugate variables like position

and momentum, energy and time, angle and angular momentum etc. can neaerbe less than that
of the order of h /2" |

ie, Ax.Ap,2h/2 |
Ay.Ap,2h/2 } ..(1.78)
Az . Ap, 2h/2
AE . At2 h [2 -(1.79)

and A]. A8 /2 ...(1.80)



The radius of the nucleus of an atom is of the order of 107* m. Hence, if the
electron is assumed to be confined inside the nucleus, then the uncertainty in the
position of the electron should be equal to the diameter of nucleus i.e.

Ax=2x10""m
According to Heisenberg’s uncertainty principle,

Ax .Ap, ~h

hzh
Ax 2nAx

or Apx ~

6.625x 10~
Pxf' 2 “14
P x3.14x2x10

=5.275 x 10 ~*! kgms™

If Ap, is the order of u.l]écertainty in the momentum of the electron, then its
momentum must be atleast comparable to Ap, if electron is confined inside the
nucleus. A ;

p,~Ap,=5275 x 107 kgms™
The corresponding kinetic energy of the electron can be written as
2

E= ; £~ , where m is mass of electron.
m




- (5.275x10721)?
2x9.1x10°

or

__ (5275x107%)? v
2x9.1x10 M x1.6%10©

=9.7x10” eV

E =97 MeV

This shows that if electrons exist inside the nucleus, then their K.E. should be
of the order of 97 MeV. But experimental data indicates that the energy of the

electrons emitted by nuclei is not greater than 4 MeV. Thus, the electrons can not be
present within the nucleus.

The radius of the nucleus of the atom is of the orderof 10-** m. Hence, if
neutrons, protons and o—particles are assumed to be present inside the nucleus,
then the uncertainty in the measurement of their position should be equal to the
diameter of the nucleus, i.e., Ax=2 x10"%m.

According to Heisenberg’s uncertainty principle,

AxX.Apg~ h

or Apz-—’-‘—a h

* Ax  2nAx

_ 6.625x107*
Px = 2x3.14x2x107"

=5.275 x 102! kgms™

If Ap, is the order of uncertainty in the measurement of momentum, then
their momentum must be atleast comparable to Ap, , if neutrons, protons and
a-particles are present inside the nucleus.

Thus, p, = Ap,=5.275 x 107! kgms™
The corresponding K.E. of neutron (or proton) inside the nucleus can be given as
2

E= px
2m

, where m is the mass of proton or neutron.

_ (5.275x%10°1)* ]
2x1.67x107%

or



8.4 10"" % | ' |

\ EuBdx107"? | u s gV
= \Q) J 1.6x10ﬂ

or E=52 @/ | ':‘»i;f-’-'
is energy is less than the energy carried by neutrons and P!‘M
the nucleus. Thus, neutrons and protons exist inside the nucleus.
- The rest mass of a-particle is approximately four times the rest mass of pro#
So, a-particle should have an energy of the order of 13 KeV. The m
a-particles emitted from nucleus is found to be more than 13 KeV.
a-particles can exist inside the nucle‘gs//




DIFFERENCE BETWEEN CLASSICAL AND QUANTUM
'MECHANICS ; M(\ ot S AGSGE o S G‘;gﬁ _

1. Classical mechanics deals with particles/objects of macroscopic size

whereas quantum mechanics deals with particles of Microscopic size.

2. Classical mechanics, also knowh as Newtonian mechanics, has been

developed on the basis of Newton’s laws of motion having basic
equation ( F m-;) whereas method of approach to obtain the laws of

motion in quantum mechanics is on the basis of Schrodinger’s wave
equation.
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3. In classical mechanics, the future behaviour (i.c., the position and
momentum) of a particle can be completely known if its initital position
and momentum as well as the forces acting on it are known, whereas in
quantum mechanics there is an inherent uncertainty in the determination
of initial position and momentum of a particle. It is therefore not possible
to completely describe the future position and momentum of a particle
without any uncertainty. In other words, in classical mechanics the
trajectory of the particle is sharply defined whereas quantum
mechanically the trajectory of the particle is not sharply defined.

4. Classical mechanics deals with certainties whereas quantum mechanics
deals with probabilities.

5. Experiments such as the photoelectric effect, Compton effect,

cannot be explained in classical mechanics but hold good i
mechanics.

SOLVED NUMERICAL PROBLEMS @

\ev0= T =23eV =23x16x107]
or \ \ = 6.625x107* x3x10° .
| °  23x1.6x107"

=5.400 x 107m = 5400 A

Solution : From Einstein’s photoelectric equation, we know that

1 5
hv-w+ EMUM



Here, E=288eV=288x16x10"]

6.625 x 10~34

A=
;22 x1.67x10"% x28.8x1.6x1071?

=0.05A.

4

Solution : The de-Broglie wavelength is given as

h

o ;ZquV
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Here, m=668x10"kg, g=2¢=2x16x10"C,

h=6.625x102 s

and V = 2000 volts

6.625x 1034

R e e
2x6.68x107% x2x1.6x1071? x 2000

_ 6.625x107%
J/ 85.504 x10 x 10~

_ 6625
29.24

1072 m

=23x10¥m=23x103A.

h

But E=kT so, A=
2mkT

h=6.625x10"*]s, m=167x10%kg
k=1.38x10"3J/K,

T=27°C=(27 +273) K=300 K

6.625 x 10~

A= m
32x1.67x10-” x1.38x10™2 x 300

6.625x 107

- 3.72x10°% m

=1.78x10""m =178 A.
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Example 9 : The avetage time an electron remains in the excited state in
an atom is 10°° sec. If this is the uncertainty in the measurement of time,
estimate the uncertainty in the measurement of energy of the transition.

Solution: Heisenberg's time-energy uncertainty relation is given as

AE . At=h

Here At=10%sec, h = -2h—=1.05x10'34 Js
b

1.05x 1073
L.
At 10~

=1.05x10728]

1.05x10728 é
1.6x107"

=0.0656 x10 % eV,

Solution : From Heisenberg’s uncertainty principle, we know that

-\ (Ax)max (Ap)min =

Maximum uncertainty in position of proton, (AX) .o 15 €qual to diameter of
nucleus.

(Ax) . =2 * 107 cm =2 10 m

h=1.05x%x103]s

-

R _105x10™*
NO“’, (AP) (A.x) = 2 x 10—15 gm/S
max

=0.525 x 10" kgm/s

As momentum p of proton inside nucleus cannot be less than (Ap) ,;,



—
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P = (AP)min=0.525 x 107" kgm/s

2
and K.E. of proton inside nucleus, E = g—
m

Here, m=1.67 x 10~* kg for proton

_ (0.525x1071%)?
2x1.67 x 107

=0.0825 x 10711]

0.0825 x 10~

- 1.6x1071? d

=0.0516 x 108 eV
Hence, E=5.16 MeV.

Example 11 : The velnclty ofa
error in its measurement i53 '0_
measumment of its positio

Solution : The unicertainty in velocity of proton,

A SR A 10*m/s
100

<. The uncertainty in momentum, Ap=m Av
where m is mass of proton = 1.67 x 107 kg
Thus, Ap =1:67 x 1077 x 10*
=1.67 x 102 kgm/s
Using Heisenberg's uncertainty principle, we have

Mﬁpzh

So, uncertainty in position of proton, Ax = f—
p
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‘e 6.625x 10"
T 2x3.14x1.67x10° 8

=0.629 x 100" m

& Example 12: A ball of 0.1 g is thrown with a velocity 10° cm/sec through
) circular hole of radius 10~* cm. What is the uncertainty introduced ifi the

* langle of emergence ?
Solution: Given m=0.1g=0.1x10"3kg or 10:*kg
v=10°cm/s =10 m/s
-. Momentum, p of ball = mv = 10"* x10 = 10°° kgm/s

By Heisenberg’s uncertainty principle,
Ax . Ap=h = Ap~= ]
¥ ol

Here, Ax=2x10"%cm=2x10"%m

6.625x10734

Thus, ’
e P 2x3.14x2x10-°

=0.525 x 10~ %® kgm/s
Hence, uncertainty in the angle of emergence

Ap  0.525x107%°

AB = =
p 10

=0.525 x 10~% radians.

A
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‘ POSTULATES OF QUANTUM MECHANICS

The postulates of quantum mechanics are as follows :

1. Associated with any particle moving in a conservative field of force, is a

wave function, which determines everything that can be known about the
system.

2.  With every physical observable g, there is associated an operator Q, which
when operating upon the wave function associated with a definite value of
that observable will yield that value times the wave function.

3. Any operator Q associated with a physically measurable property g will be
Hermitian.

4. The set of eigenfunctions of operator Q will form a complete set of linearly
independent functions.

5. For a system described by a given wave function, the expectation value of
any property g4 can be found by performing the expectation value integral
with respect to the wave function.

6. The time evolution of the wave function is given by the time dependent
Schrodinger equation.

B3 WAVE FUNCTION AND ITS PHYSICAL SIGNIFICANCE

A wave function consists of both real as well as imaginary part i.e., it is in
general complex. Thus, it cannot be.measured by means of any actual physical
instrument. All possible information about the physical system is contained in the

_>

wave function. The wave function y(r,t) provides a complete quantum
mechanical description of the behaviour of a particle of mass m with potential

-
energy Viat position r atany time t. Since the motion of the particleis connected

to the propagation of an associated wave function, so these two must be
associated in space. That is the particle is most likely to be found in some regions of
space, where the magnitude of wave function is large and in other regions of space,

— .
where the magnitude of y(r,t) is small, the particle is not likely to be present.

_>
This shows that y( 7 ,t) canbe interpreted in terms of statistical terms. Max Born
in 1926 gave a fundamental postulate that if the particle is described by a wave

—
function y( r ,t), then the probability of finding the particle within the volume

=y
element dV = dx dy dz about point r at time t is
- o
P(r,t)dV =|y(r O av

- — > —> —
or P(r,t)dV =|y(r DI7dV =y*(r, Hy(r, t)dv
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where y*(7,t) is the complex conjugate of w(r,t) and P(r,t) is the
probability density. So, we can calculate the probability of finding the particle i,
the vicinity of a particular point, provided we know the wave function associated
with the physical system. |y (x,)|? is called the probability per unit distance of
prolmbrhh; density (one dimension). Thus v itself has no physical significance byt
| v |* gives the probability of experimentally finding the particle described by y a

point y (x, ¥, z) atany timet. |y |*=1 leads to strong probability for presence of the
particle, but |y |[*=0leads to absence of the particle.

Note: If y =A + B, then its complex conjugate is y* = A — iB

L Pt v = A? + B2 Hence |y % is always a positive real'\quantity.

2.3.1. Conditions Satisfied by Wave Function

Due to the above interpretation of | y [ as/@a probability density, the solution

that can be allowed for y from the Schrodinger equation are subjected to satisfy
the following conditions :

() v must be finite evérywhere.‘Because if it is infinite at a particular point
then it will lead to an infinitely large probability of finding the particle
at that point and this would violate the uncertainty principle.

(#) y mustbesingle valued at each and every point in space because if y has
& P P

more than one value at any point, then it leads to more than one value of

probability of finding the particle at that point, which is not acceptable.

() Both y and its first order derivative must be continuous everywhere
except at those points at which potential energy is infinite. This is

; , s »
required because in Schrodinger wave equation —é—% must be finite
X

everywhere.

(w) v must be such that it describes the particle completely that is a
knowledge of y at t = 0 must be enough to get its value at any time
t (later).

(v) y must be normalisable, which means that y must go to zero as

X —tow,y—+owand z—>+oinorder that I|w|2dv over all spacebea

finite constant.



TIME INDEPENDENT OR STATIONARY STATE SCHRODINGER
WAVE EQUATION AN -

The time dependent Schrodinger equation in one dimension for a particle in
a field is given as

2 2
iR 1 [——"——Q—+V]w ~(2.31)

In the case, where the potential energy V is independent of time and depends
only on 'the position and the total energy E is constant then position and time
coordinates can be separated in eqn. (2.31). Thus y may be represented in the form

y(x, )= (x)u(t) (2.32)
Here ¢ is a function of x alone and u is a function of ¢ alone.
Differentiating eqn. (2.32) w.r.t. f, we get

oy ou
_a_t_=¢6t
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Differentiating eqn. (2.32) w.r.t. x, we pet

r"lp ﬂd]

i Y

ox Oy

Differentiating this equation again w.r.t, x, we get

0%y “ )
ox? Ox?
oy

From equation ih 4 E y, we get

oy i

i SEPELE, |

aa  n Y
ot X - B | -(2.39)

62
Putting the values of V, %and o ‘f ineqn:(2.31), we get
e
Ih(__f. E¢u) = -—E—u%x;f+Vu¢
n? %

Eyp=—-———+V
= » 2m Ox* ¢
_ h? 9%
T ——+Ep-Vp =
\ 2m 6x* +Ea—Ve =0

26 2m '
or P + 37 (E-V)¢ =0 «(2.34)

As ¢ is a function of x only in 1-D, so we can write ax? w ? Putting it in

eqn. (2.34), we get

d2¢

) ﬁz (E-V) =0 (2.35)

which is one-dimensional time independent Schrodinger wave equation.

. _
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In 3-B, ¢ isa function of r i.e., (x, y, z) and thus, the time independent

‘ z B L ) . . "
' (8chrodinger wave equation in three dimensions can be written as
/

: V2 o(r)+ 25 (E-V)4(7) =0 A2.36)

| > %% 0% 0%
where V2 ¢(r) o ¥ a2
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‘ SOLVED NUMERICAL PROBLEMS
<
B 1

the probability of finding the particle in the region 0 < x < X X

!

Example 1:The wave function of a particle confined to a box of length |
is qr(x)-:\/%sin—?— in the region 0 < x <L and zero everywhere else. Calculay

2

Solution : The probability of finding the particle in the region 0to L/2j

given by

L/2
P = j Wy dx
0

L/2
_ J‘ ’2 : (nx) ’2 4 (nx]
= —sin| —|.[—sin | —"dx
2 14 L L .
L/2

=£ jlsinz(ﬁ]dx
L . L

XL
L{2

P=1.
2

Thus the probability of finding the particle is half.




APPLICATIONS OF
SCHRODINGER WAVE EQUATION

“The mathematical framework of quantum theory has
passed countless successful tests and is now universally
accepted as a consistent and accurate description of all
atomic phenomena”

- Erwin_Schrodinger

B FREE PARTICLE IN ONE-DIMENSIONAL BOX

In quantum mechanics, abox means a region of space in which the particle
experiences no force i.e., the potential energy of particle is zero in this region and
infinite outSide this region. One dimensional box means that the particle is
allowed to'move only along a straight line say along x-axis.

Consider a particle of mass m confined to move in one-dimensional box of
length a along x-axis under the following conditions :

() The walls of the box are rigid and perfectly elastic so that the particle
rebounds with the same kinetic energy after making elastic collision
with the wall and the total energy E of the particle remains constant.
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(i) The walls of the box are non-penetrable so that there is no probability of
finding the particle outside the box.

Such a one-dimensional box is shown in fig. 3.1 and its potential energy
function can be defined as

0 for0 < x <a ie., inside the box
V(x) = -(3.1)

o for x <0 and x > a i.e., outside the box
V(x)=o V (x) =

V(x) = Vx)=0 V(x)=o
Outside box Inside box Outside box

x=0 X=a X=»
Fig. 3.1 : One dimensional box

One dimensional time independent Schredinger equation is given by

d*y " 2m

dx2 ;2_

ForO<x<a ie.,insidebox; V=0 and eqn. (3.2) takes the form

[E~V]y =0 (32)

d*y . 2mE
dx*  h?

v =0 -(33)

&y

dx?

2mE :
where k= Yy «:(3.9)

The general solution of eqn. (3.5) can be written as

y()=A e +Be ™ .(3.6)

or +ky =0 .(34)

where A and B are arbitrary constants, which are to be determined by using
boundary conditions. The boundary condition on v is that yw must be continuous
at the point of discontinuity of potential i.e., at x=0and x =a.

Since the particle is confined within the box only, so the probability |y (x)|? of
finding the particle outside the box must be zero. Thus, y (x) must also be zero
outside the box

ie., y(x)=0 for x<0 and x2a (3.7)
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From the boundary condition at x = 0), i.e., w (x) =0 at x = 0, we have
0=A+B ..(3.8) [Using eqn. (3.6))
From the boundary condition at x =g ie, yw=0atx=a, we have
Ae" + Be = ) ..(3.8a) [Using eqn. (3.6)]
From eqn. (3.8), wegetB=- A
Putting this value in eqn. (3.8a), we get

Aef’fa s A ika _ 0

ika _ -~ ika
or 2iA |:E—-.e— :| =0
2i
e _ opikg 1
or 2iAsinka=0 (39) | v ————=sinka
21 J‘
= either A=0 or sinka=0

But A # 0 because if A =0, then B=- A =0, hencé y becomes zero everywhere
which means the particle is not present in the box. '

Hence, sinka=0
or sin ka = sin nn
or ka =nn
or k= % , wheren=1,2,3,..... -(3.10)

Putting this value of k in eqn. (3.5), we get

Hn 2mE
a h?
n? n? 2mE
a? h?

n? n? h?
2ma*

or E= ~(3.11)

It is clear that n # 0 because n =0 gives the result y = 0 everywhere which
means that particle is not present within the box. Alsoforn=-1,-2, ....., we have

the same wave function as that for the corresponding positive values of n i.e.,
negative values of n do not yield any independent solutions.
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Hence, the allowed values of nare 1,2, 3, .. and eqn. (3.11) can be written ,,

I - Birr e
e g R

T RN SR L PR

1£D

) 2 JhZ
E,= "—21}-—?— with n=1,2,3,.... BIn
ma’

Now, the solution of eqn. (3.4) is given by
vi) =AM -Ae ™ [Using eqn. (3.8) in eqn (3 4)

tkx _ - 1kx
- 21’A[¥~J

or v (x) = 2iA sin kx %
or y (x) = N sin kx Q\' A3

where N = 2/A is another constant.

The value of N can be found by using normalisati ony(x)ie the
total probability of finding the particle inside the ity
ie, - _[ v (x) y(x @
0 g N
h kx . N sin kx dx =1 [Using eqn. (3.13)

sin? kxdx =1

S ey, ®

I(l-mska]dx_l
2
0
w
z—l a
o INE ;dx-;mmx]-l
. 2
| 0 0
|N|=’r_mnzu] .
= 2 [T 2 |,

or ——i——-a—%(mm-mﬂ)]'l
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F

i~

IN? 1
2 B nn
’ dhi

a

.

nm
(sinZ-?a—sinU) -1 [’-"":““]

NI2T
L a——a—(sin:!nu-—sinﬂ):l'l

2 | 2nn
N 2
) | 21 (4 0] o1
T INIZ = 4
a
T N= 2 ...(3.14) [Neglecting the phaseé factor]

Hence, egn. (3.13) becomes

v, (x) = ‘E sin [ffx) .(3.15)

Eqn. (3.15) represents the normalised wave fiinction for the particle inside
the box.

Let us consider the eigen functions-and the corresponding probability
density for various values of n.

Forn=1, ()= 3sin[EJc)
a a
2 X

2=— in2 —_—

and \ 1wy 2= 2sin? ()
2 . (2

Forn=2, v, (x) 7 J—E sin (T]
2 s 2nx

2= Zsin? | —
awmd  |wy@ 2= 2sin? (2

Forn=3, v, (x) = 1’3 sin [—3——-)
a a

nd w02 Zein? (2]
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Forn= 4, A (\) = Jg sin (ﬂ_‘_]
a a
2 2 . (4
and |y, (x)|* = = sin? [“—HJ and so on.
i a I

First four normalised eigen functions and their corresponding probability
densities are plotted in fig. (3.24) and fig. (3.2b) respectively.

2
v W (%) Ly [ vl
IJI [\ |
| .
N — a 0 a
N4Ua/2 a/4 a/2_3al4
f :

s (X) /\ & A\ N
0 a3 _ajj a ' | 9 % . a

: \" e

: 2

£y, (X) H

3ai4 | ° o aa 3a/4
v, (x) 2

1 ’ . —.

0 a2 . a X 0 a X
Plot of normalised wave functions Plot of _Probability densities
y,(x)forn=1,2,3and 4 ly, x)|“forn=1,2,3and 4
(a) (b)

Fig. 3.2

It is clear from fig. 3.2(a) that there is only one-half wave for the lowest en-
ergy state i.e., n =1 and in the successive higher energy states, an additional half
wave is present as the energy is increased by one step.
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Example 1: Calculate the fmt three energy levels of an ehd-

..>-

h=6.624 x 10>* Js. o ¢ o

Solution : For a particle in one-dimensional box we know that

n2 th hZ
2

3 2ma

Here m=9.1x10"3kg a=1A or a=10"""m
On putting n = 1, the above equation becomes

g, = n? h?
2ma?
2 -34\2
or Be (3.14)° x (6.624 x 107 )

2x9.1x1073 x (10710)2 x 452

 6.624x6.624x107 "
8x9.1

or
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wr

or

¥ 7 r'.'lf-ﬁ‘i.".l 2

=0.6027 x 10~ 17

_ 0.6027 x 10~
1.6x10°1°

E,;=0.3768 x 10% eV = 37.68 eV

242
For n=2, = Ef—n—h——
2ma?
=4 x 37.68 eV =150.72 eV
2 h?

2ma*

=9x3768eV =339.12eV

e

For n=3, Ey=9x

Here a=05 A =0.5 x wﬂim
h 6.63x10

Forn=1, | 1 2 2x 05x 107

=6.63 x 107 % kgms™!
2h

) me‘z p= E-;z— =2x6.63x10 24

=13.26 x 10~ kgms™!
3h

Forn=3, p3= — =3x6.63x 107

2a
=19.89 x 10" * kgms™.

y

P L N et g -
MY G Pk e i i :

Solution : The average kinetic energy of molecule of perfect g at

temperature T is given by
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E-—-EkT
2

The energy eigen values of a particle in 1-D box of length a is given by

n 2n2p?
" 2ma?
For lowest energy, n =1
242 21,2
SO, El west nhzz nzh 2
owest  2ma*  2ma* (4n°)
hZ
or lowest Smaz
According to given condition,
3 n? -
EkT = 8ma2 —-(I‘)
Here k=138x102]JK7,m=91x10"%"kg
a=05x10"1"m, h=6.63 x10"#]s
Putting all these values ineqnu.(i), we get
3 ; (6.63 x1073%)?
—x1.38x10 B xT=
ks v 2 G PTET (0.5x 10 10)2
%x 138 x10 5 x T = 2.4152 x 10V
2x24152x10° Y
or _
3x1.38x10"2
=11.67 x 10°K
- Example 4 : Can you observe the ﬂ:uw-llﬁhh‘l‘ a ;»n dhq
-wh'h aboxoflength10em? =

Solution : We know that the energy eigen values of a particle in 1-D box is
given as
242p2
2ma®

E =

n

Here, m=10g=10x10"2=10"2kg
a=10cm=10x10?m=10"'m
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) n*n?h*
"> 8 x10"% x (10)4 x (4n?)

S0, E

n? h?
8x10 4

n? x (6.63 x 10~ 3)?
8x10

J

n% x (6.63 x 6,63 x 10~ %)

In teoms ot e, B TEX10 T x16%10 7
or E, =343 xn?x 107 eV
Forn=1, E, =3.43 x10 ol
Forn=2, E,=13.72 x 104 gV
Forn=3, E,=30.87 x 107%° eV
Forn=4, E, =54.88 x 100% eV and so on.

These energy levels are so close to each other that they cannot be observed
separately and a continuum will be observed.



