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Attempt five questions in all Q. 1. and all its parts are compulsory.
Attempt any four questions from the rest. Also, attempt any two parts

out of three from each questions.
Non-programmable calculators are allowed.

Q. 1. (a) Normalize the wave function, (x) = e–|x|/a. (3)
Ans.  = e–|x|/a, * = e–|x|/a

* = e–|x|/a,

For mormalization 
–

* 1dx

So,
0

– 2| |/

–

x ae dx  = 1



0
– 2 /2 /

– 0

x ax ae dx e  = 1



02 / –2 /

– 0
/ – /

x a x ae e
a a  = 1

–
– 0 0 –

aa
a a  = 1

So, a = 1
Normalize wave function =  = e–x.
(b) Write the Schrodinger equation for a system of two particles of masses

m
1
 and m

2
 carrying charges e

1
 and e

2
 respectively in what kind of field ? (2)

Ans. m
1
, e

1
 = mass and charge of Ist particles

m
2
, e

2
 = mass and charge of IInd particles

When two charges kept in a system they interact with each othes through
ibctrostatic foro.

(201)
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Potential is given by = V(x) = 1 2

0

1
4

e e
x

x = Distance between two charges
There common mass at

Centre of mass =
1 2

1 2

m m
m m

General Schrodinger equation is :

2 2

2
–

V( ) ( )
2

d x x
dx


 = E(x)

2

2 2
2– V( ) ( )d x x

dx 
 =

2–
E ( )

2
x



2

2 2
2 [E – V ( )] ( )d x x

dx 
 = 0

2
1

2 2
2 1E –

4
xe ed
xdx 

 = 0

(c) Given that the position and momentum operators are Hermitian, verify
whether the operator 2ˆ ˆ ˆ ,xx xp  is Hermitian. (3)

Ans. x̂  Hermitian                        p̂ Hermitian
If operator A is Hermitian then A+ = A

2ˆ ˆ ˆ[ ]xx x p  = 2ˆ ˆ ˆ[( ) ( ) ]xx x p

Using (A + B)+ = A+ + B+

= 2ˆ ˆ ˆ( ) xx p x

x̂  = ˆ ˆ ˆand x xx p p

2ˆ ˆ ˆ[ ]xx x p  = 2ˆ ˆ ˆxx p x

Since, ˆ ˆ&x p do not commute with so given operator is not hermitian.
(d) Write the values of quantum numbers n, l, s, j, m

1
 for the following states :

(i) 22S
1/2

(ii) 52F
5/2

. (3)

••
P1m1 P2m2
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Ans. (i) 22S
1/2

General notation  n2S + 1L
j

So, n = 2,  S = 
1
2

, L = 0, j = 
1
2

    m
e
 = 0

(ii) 52F
5/2

So, n = 5,  S = 
1
2

, L = 0, j = 
1
2

   L = 3, m
e
 = – 3, – 3, – 1, 0, 1, 2, 3

(e) Consider the state,  = 1 2 3
1 3 3 ,
10 5 10

 where 
n
 are orthonormal

eigenstates of an operator Â . Find the expectation value of the operator Â  is the

state , if it satisfies the eigenvalue equation 2Â (2 1) .n nn (3)

Ans.   = 1 2 3
1 3 3

10 5 10

Â n  = 2(2 1) nn ,      <> = 1

Expectation of Â  = Â /

= 1 2 3
1 3 3

10 5 10

1 2 3
1 3 3Â

10 5 10

= 1 2 3
1 3 3

10 5 10

2 2
1 2

1 3(2(1) 1) (2(2) 1)
10 5

2
3

3(2(3) 1)
10

=
3 3 39 19

10 5 10
 = 

2 27 57
10 5 10
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=
3 54 57

10
 = 

114
10

 = 11.4.

(f ) Write down the wave function for a system of (i) two Bosons and (ii) two
fermions indistinguishable. (2)

Ans. If  (
1
, 

2
) is any normalized assymetric wave function.

(i) Two Bosons : Bosons have symmetric wave function


s
 (

1
, 

2
) = 1 2 2 1

1 [ ( , ) – ( , )]
2

(ii) Fermions : Fermions have anti symmetric wave function


a
 (

1
, 

2
)  = 1 2 2 1

1 [ ( , ) – ( , )]
2

(g) What is the probability that an electron in the state


210

 = – /2 0
5/2
0

1 1 cos( )t are
a

 of the hydrogen atom, exists between a distance

of 3a
0
 to 6a

0
 from the nucleus. (3)

Ans. 
210

 = – /2 0
5/2
0

1 1 cos( )t are
a

P =
62 0

*
210 210

0 0 3 0

V
a

a
d

=

62 0
– /2 2o

0 0 3 00

1 1 cos
a

r a
s

a
r e

a

=
62 0

– /2 2o

o0 0 3 0

1 1 cos
a

r a

a
r e

a s
2 sinr dr d d

=
62 0

– /4 20

0 0 3o 0

1 sin cos
a

r a
s

a
r e dr d d

a

=
62 2

– /2 4 0

0 0 30 0

1 cos sin
a

r a
s

a
d a r e

a
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=
62 0

– /4 0

0 30 1

1 cos 21 2
2

a
r a

s
a

d r e dr
a

=
62 0

– /4 0

0 3 0

2
2

a
r a

s
aa
r e dr

a

=
6 0

– /4 0

30 0

2 2
2

a
r a

s
a
r e dr

a

=
– / – /0 04 3

0 0

2 – 4
(– 1 / ) – 1 /

r a r a

s
a

e er r
a aa

=
– / 0– /4 30

0 0
0

2 4
(– 1 / )

r a
r a

s
a

er a e r a
aa

– /2 2 0
012 r aa r e dr

= – / – /4 3 2 20 0
0 0 0

0

2 – – 4 12r a r a
s

r a e r a e a
a

– / – /0 02 2
0

0 0
– 12 2

(–1 / ) (–1 / )

r a r ae er a r
a a

= – /– /4 3 2 2 30
0 0 0

0

2 – – 4 – 12r ar a
s

r a e r a e r a
a

– / – /30 0
024r a r ae a re

= – / – / – /4 3 2 2 30 0 0
0 0

0

2 – . – 4 – 12r a r a r a
s

r a e r a e r a e
a

– / – /3 30 0
0 0

0 0 0

24 24
–

– 1/ – 1 / – 1 /

r a r aa r e a e
a a a

= – /1 4 3 2 2 30
0 0 0 0

0

2 [– – 4 – 12 – 6r a
s
e r a r a r a a

a
4
0 0 024 – 24 3sr a a a
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= – 6 4 3 2
0 0 0

0

2 [– (6) – 4(6) – 12(6)s s s
s
e a a a

a
0 0– 24(6) – 24s sa a

– 34 3 2
0 0 0 0 0[(3) 4(3) 12(3) 24(3) 24 ] }s s s s sa a a a a e

= – 3 – 62 [81 108 108 72 24] –e e

[1296 864 432 144 24]}

P = – 3 –62[3 3 – 2760 ]a e e .

Q. 2. (a) (i) Set up the time dependent Schrodinger equation and hence derive
the time independent Schrodinger equation. (4)

(ii) Starting with the Schrodinger equation in one dimension and using a de
Broglie plane wave as a solution, show that when V = 0 this leads to the correct
nonrelativistic relationship between energy and momentum. (3)

Ans. (i) Find this expression in this text book.
(ii) Schrodinger equation in 1 – D

2 2

2
–

V( ) ( )
2

d x x
m dx


 = E ( )x ... (1)

De Broglie plane wave solution = ( ) A ( – )x bi kx wj

2

2
d
dx

 = 2 2 2 2A ( – )i k exb i kx wt i k

Put in (1)

2
2 2–

( ) V
2

i k
m


 = E [V = 0 (given)]

So,
2

2 2–
V

2
i k

m


 = E

E =
2 2–

2
k
m


         P = k

E =
2

2
p
m

nonrelativistic relationship between energy and momentum.
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(b) For a Gaussian wave packet

2

2 – ( – )4 0 0( ) Ae

x
i k x w tx e

corresponding to a free particle (i) Find the probability current density and
(ii) Verify the continuity equation. (4 + 3)

Ans. Look at the Schrodinger equation for a free particle.
(c) (i) Explain spreading of a Gaussian wave packet for a flee particle in one

dimension. (5)
(ii) Calculate the fractional change in the width of the wave packet in one

second if the wave packet corresponds to a particle of mass 6.644 × 10–27 Kg. The
initial width being of the order of 10–19 m. (2)

Ans. (i) This is also in the section dedicated to the Schrodinger of free particle.
(ii) m = 6.644 × 10–27 Kg.
If initial width is x, then width at time t is

x (t) =
2

0
0

1
x

x
x

0

x
x

= 2
02 ( )

t

m x



0

( )x t
x

 =
2

0
1

x
x

0

x
x  =

–34

2 –27 –10 2
0

6.6 10

4 ( ) 4 3.14 6.6 10 (10 )
h

m x

=
13

1210 10 10
4 3.14 4 3.14

0

( )x t
x  =

2
12101 10

4 3.14

Q. 3. (a) Write the Schrodinger equations for a linear Harmonic oscillator and
solve it to obtain the energy eigen values. (7)

Ans. Find its solution in the chapter portion of this textbook.
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(b) (i) A Harmonic Oscillator has a wave functions which is a superposition of
the ground state and the second excited state eigenfunctions (x) = 

0
(x) + 2

2
(x).

Find the expectation value of energy. (3)
(ii) Using the Uncertainty Principle show that the ground state energy for a

Harmonic Oscillator is non-zero. (4)
Ans.  (x) = 

0
(x) + 2

2
(x)

E
n
 =

1
2

n w

normalize the wave function on

 (x) = 0 2
1 2( ) ( )
5 5

x x

<|E|>  =
0 02

0
( ) 2 2E 1

5 5 5 5

x

= 0 0 0 2
1 2 1 1 1 2| | 0 | 2 |

2 5 25 5 5
w w 

= 0 0 2 2
1 4 5
5 2 5 2

w
w




= 2
10
w

w




<|E|>  =
21
10

w

(ii) The ground state energy for the quantum harmonic oscillator can be shown
to be shown to be minimum energy allowed by the uncertainty principle.

The energy of the quantum harmonic oscillator must be at least

E =
2

2 2( ) 1 ( )
2 2
p

m x
m

x = position uncertainty
p = momentum uncertainty

Taking the lower limit from the uncertainty principle

xp =
2
h

Then the energy expressed in terms of the position uncertainty can be written

E =
2

2 2
2

1 ( )
28 ( )

h m x
m x
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Minimizing this energy by taking the derivative with respect to the position
uncertainty and setting it equal to zero gives

2
2

3
–

4 ( )
m x

m x
  = 0

Solving for the position uncertainty gives

x =
2
h
m

Substituting gives the minimum value of energy allowed.

E
0
 =

2
2 2

2
1 ( )
2 4 4 28 ( )
m x

m x
   

This is a very significant physical result because it tells us that the energy of a
system described by a harmonic oscillator potential cannot have zero energy.
Physical system such as atoms in a solid lattice or in polyatomic molecules in a gas
cannot have zero energy even at absolute zero temperature. The energy of the
ground vibrational state is often referred to as "zero point vibration". The zero
point energy is sufficient to prevent liquid helium-4 from freezing at atmospheric
pressure, no matter how low the temperature.

(c) (i) An electron is confined in the ground state of a one-dimensional harmonic
oscillator such that x = 10–10m. Assuming that the average Kinetic energy is
equal to the average Potential energy, find the energy is electron volts required to
excite it to the first excited state. (4)

(ii) For a linear harmonic oscillator in its ground state, show that the probability
of finding it beyond the classical limits is approximately 0.16. (3)

Ans. (i) Use the above relation and find out the energy difference between
excited state according to the statement given in the question.

x = 10(–10)m
<K. E> = <P. E> [Given]

From uncertainity principle

x   P =
2


P =
2 x


K. E. =
2 2

2 2
( P)

2 ( ) 8 ( )
h

m hm x m x

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K. E. =
–34

–31 –20
6.60 10

8 3.14 9.10 10 10

= 176.6 10 J
228.592

= 0.02887 × 1017J
= 2.9 × 1015J

Since, K. E. = P. E.
So, Total Energy = 2 × K. E

= 2 × 2.9 × 1015J
E = 5.8 × 1015J

(ii) E
0
 =

1
2
w                   If Amplitude = A

E
0
 = 2 21 A

2
mw

2 21 A
2
mw  =

1
2
w

 =

1
2 2 21exp –

2
x

P
in

 = Probability classical limit

=
A

0 0
– A

* dx

=
1/ 2 2–

–1/

xe dx

= y = x,   y =  dx

=
1/ 2–

0

2 ye dy

=
1/2 4 6

2

0

2 1 – – ......
2! 3!
y y

y dy
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= 0.84
P

out
 = 1 – P

in
 = 1 – 0.84 = 0.16.

Q. 4. (a) (i) Obtain the solution for the Legendre equation

2
2

2
P( ) P( )(1 – ) – 2 P( ) 0.d d

dd

What are the conditions that need to be imposed so that the solution are well
behaved ? What do the conditions imply. (4)

(ii) Verify whether the function Y
1,1

(,) = 
3– sin

8
ie  is an eigenstate of

the following angular momentum operator :

L̂x  = sin cot cosih (3)

Ans. (i) First solution of legendre differential equation

y
1
 =

– 2 – 4
0

( – 1) ( – 1) ( – 2) ( – 3)
– ....

2(2 – 1) 2.4.(2 – 1) (2 – 3)
n nn n n n n n n

a x x x
n n n

This is a terminating series also called legendre polynomial of nth order i.e.,
P

n
(x)

(ii) Second solution of lengendre differential equation

y
2
 =

– –1 – – 3
1

( 1)
.......

2(2 3)
n nn n

a x x
n

This is a non-terminating series.

(ii) y
1,1

 (,) =
3– sin

8
ie

L̂x  = sin cot cosih

L̂x  y
1,1

 (,) = sin cot cosi

3– sin
8

ie

= 3– sin cos cot cos sin ( )
8

i ii e e i
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=
3– sin cos cos cos

8
i ii e i e

=
3– cos sin cos

8
ii e i

= 3– cos cos sin
8

ii e i

= –3– – cos
8

iie e

=
3– cos –

8


So, given function is not a eigenstate of L̂x .

(b) Calculate 
2

0

1V( )
4
er

r
 for the first excited state of the hydrogen

atom with the wave function 
5/2

– 1/2 0
210

0

1 1 cos .
2

are
a

(7)

Ans. V ( )r  =
2

0

– 1
4
e

r


210

 =
5/2

– /2 0

0

1 1 cos
2

r are
a

V ( )r  =
– /7 20

0

1 1 1cos
2

s
r ar e dv

a r

=
– / 2 20

0

1 1 cos sin
2

s
r ar e r drd d

a
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=
2

– /3 20

0 0 0 –

1 1 cos sin
2

s
r ar e dr d d

a

=
– /3 0

0

1 1 2
32

r ar e dr
a s

= – /3 0

–0

1
16

r a
s

r e dr
a

Solve by parts (same as Q. 1. (g)

V ( )r  =
2 2

20 0 00

– –1 1
4 4 4(2)

e e
aa

(c) The electron in the hydrogen atom is replaced by a muon of mass
m

 = 200m

e
, where m

e
 is the mass of the electron. Determine the corresponding

changes in the following :
(i) The Larmor frequency and hence the Zeeman splitting for the 2p level in

the presence of a magnetic field of 1 Tesla. (Ignore the electron spin)
(ii) The wavelength of the corresponding H


 line. Will it be in the visible

region ? (Rydberg constant R = 1.097 × 107m–1 for the hydrogen atom) (3 + 4)
Ans. (i) m


 = 200 m

e

w
L
 or e =

B

e

e
m

For muan charge is some,  m

 = 200 m

e

So, w
L
 =

B
2 200 e

e
m

w
L
 = 400 e

e
m

2P – >     l = 1                   (2l + 1) = 3
So, this will split into three components

m
l
 = – 1, 0, + 1

(ii)  =
2 2
2

c c c
w

 =
8

–31
– 19

2 3.14 3 10
400 9.1 10

1.6 10
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=
–21

–19
685.776 10

1.6 10

= 428.61  × 10–2

= 4.2861 m
No, + S not belong to visible region.
Q. 5. (a) Consider a particle trapped inside a one dimensional finite square

well. Solve time independent Schrodinger equation for the system and obtain the
bound state eigenfunctions. Discuss how the energy levels are obtained
graphically. (7)

Ans. Consider the following piecewise continuous, finite potential energy :
U = U

0
x < 0 (1)

U = 0 0 < x < L (2)
U = U

0
L < x (3)

We want to solve Schroedinger's Equation for this potential to get the
wavefunctions and allowed energies for E < U

0
. I will refer to the three regions as

regions 0, 1, and 2 with associated wavefunctions 
0
, 

1
, 

2
.

U = U0

U = 0

x = 0 x = L

The time-invarient, non-relativistic Schroedinger's equation is

2 2

2
–

U
2
h d
m dx

 = E (4)

that can be rearranged to give

2

2
d
dx

 = 2
2 (U – E)m
h

(5)

It is convenient to define two new variables (both positive), one for regious
0 and 2, and one for region 1—they are wavenumbers :

2
0k  = 02

2 (U – E)m
h

(6)
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2
1k  = 2

2 Em
h

(7)

and Schroedinger's equation becomes

2
0,2
2

d

dx
 = 2

0 0, 2k         x < 0 or L < x (8)

2
1

2
d

dx
 = 2

1 1– k         0 < x < L (9)

In regions 0 and 2 the general solution is a linear combination of exponentials
with the same form, but with different constant, namely


0
 = A exp (– k

0
x) + B exp (+ k

0
x)       x < 0 (10)


2
 = F exp (– k

0
x) + G exp (+ k

0
x)       L < x (11)

In region I we have the same general solution that we had for the infinite
square well,


1
 = C sin(k

1
x) + D cos(k

1
x)       0 < x < L (12)

Equations (10) to (12) have 7 unknowns A, B, C, D, E, F and the energy E that is
implicitly contained in the variables k

0
, k

1
. Therefore we need to get 7 equations to

be able to solve for the unknowns.
We will first use the requirement that the wavefunction remain finite

everywhere. Consider 
2
 as x  . For this to remain finite we must require G – 0.

Similarly, as x , we require A = 0. Our solution become


0
 = B exp (+ k

0
x)             x <  0 (13)


2
 = F exp(–k

0
x)               L < x (14)

The next step is to require that the wavefunction and its first derivative be
continuous everywhere, and in our case we look at the boundaries, x = 0 and x = L.


0
 (0) = 

1
 (0)

B = D (15)
Hence 

0 
= D exp(+k

0
x).

Take derivatives of the wavefunctions,

0d
dx

 = k
0
D exp(k

0
x) (16)

1d
dx

 = k
1
 C cos (k

1
 x) – k

1
 D sin (k

1
 x) (17)

2d
dx

 = – k
0
 F exp (– k

0
x) (18)

and at x = 0 we get
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0 (0)
dx

 = 1 (0)
d
dx

k
0
D  = k

1
C (19)

So


1
 =

0
1 1

1
D sin( ) D cos( )

k
k x k x

k (20)

1d
dx

 = 0 1 1 1Dcos( ) – Dsin( )k k x k k x (21)

There remain 3 unknows, D, F, and E. Finding them is a bit messier! Consider
the boundary conditions at x = L,


1
(L) = 

2
(L)

0
1 1

1
D sin( L) + cos( L)

k
k k

k  = F exp (– k
0
L) (22)

1 (L)
d
dx

 = 2 (L)
d
dx

k
0
 D cos (k

1
 L) – k

1
D sin (k

1
 L) = k

0
 F exp(– k

0
L) (23)

We are not going much farther, but if we divided Equation (22) by equation
(23), we can see that the constants D and F cancel leaving us with one rather ugly
equation to solve for energy E (remeber this is implicitly included in the value of
k

1
 and k

0
.) The solution must be done numerically, and is left for other course. At

the end of this document the next steps are shown.
How can we get the remaining constant? There is one remaining condition,

normalization, that for this problem is

0 L2 2 2
0 1 2– 0 L
dx dx dx  = 1 (24)

Even without solving the entire problem we can make some conclusions about
the wave-function and the allowed energy levels. Recall that for an infinite square
well potential of width L the allowed energies are quantized and

En  =
2 2

2
22 L

hn
m

with n being any positive integer. Outside the well the wavefunction is 0. We
are certain that the particle is somewhere inside the box, so x – L.

With the finite well, the wavefunction is not zero outside the well, xfinite > L,
hence  from the uncertainty principle, pxfinite < px. This suggests that the average
value of momentum is less for the finite well, and therefore that the kinetic energy
inside the well is less for the finite well than for the infinite well. Indeed this is
borne out with detailed analysis. In addition, the number of allowed energy levels
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is finite, and there is a possibility that a well may be sufficiently narrow or
sufficiently shallow that no energy levels are allowed.

Also note that the non-zero wavefunction in regions 0 and 2 mean that there is
a non-zero probability of finding the particle in a region that is classically forbidden,
a region where the total energy is less than the potential energy so that the kinetic
energy is negative. We will have more to say about this later when we discuss
quantum mechanical tunneling.

(b) (i) Derive the relationship between magnetic dipole moment and orbital
angular momentum of an electron revolving around a nucleus. (3)

(ii) Explain space quantization. Calculate the possible orientation of the total
angular momentum vector J corresponding to j = 3/2 with respect to a magnetic
field along the z-axis. (4)

Ans. Imagine a particle with mass M and charge q moving in a circle of radius
R with speed v. Treating the motion of this particle classically, with speed much
less than the speed of light, the orbital angular momentum of the particle is
L = MvR. The time for the particle to make one revolution is T = 2R/v, so the circular
current represented by this moving charge is i = q/T = qv/(2R). The magnetic moment
generated by this circular current is the current times the area of the circle, or
m = iA = iR2. The ratio of the magnetic moment to the angular momentum of the
particle

 =
L 2M

qm

is called the gyromagnetic ratio.
(c) (i) What is Larmor Precession ? Derive the expression for Lannor frequency.

(4)
(ii) A beam electron enters a uniform magnetic field of flux density 1.2 tesla.

Calculate the energy difference between electrons whose spins are parallel and
antiparallel to the field. (3)

Ans. (i) Find the solution to this question in the text book.
(ii) E = E(ms = 1/2) – E(ms = – 1/2)

= mB Bg = 
B

4
g e h

m
= 1.2

E =
– 34–19

–31
1.2 1.6 10 6.6 10

4 3.14 9.1 10
g

= –2212.672 10
114.296

g

= 1.1 × 10–23g.
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Q. 6. (a) (i) Explain Normal Zeeman Effect. (2)
(ii) Write the term diagram for the splitting of the yellow line of sodium

(1s2, 2s2,2p6)3s1 into two components D1 and D2. (2)
(iii) In a Stern-Gerlach experiment, a beam of hydrogen atom with velocity

3 × 103 m/s, passes through an inhomogeneous magnetic field of length 50 cm
and having gradient of 200 T/m perpendicular to the direction of the incident
beam. Find out the transverse deflection of the atoms at the point where the beam
leaves the field. (Bohr magneton 9.24 × 10–24 J/T, M = 1.67 × 10–27kg). (3)

Ans. (i) Find its solution in this text book.

58
9.

0 
nm

58
9.

6 
nm

E
ng

er
y 

(e
V

)

.0021 ev
Spin-orbit
 spitting.3.04 ........

0.597 nm

– 5.14

3
2

3p

1
2

3p

1
2

3s

(ii)

(iii) V = 3 × 103 m/s,              l = 50 cm


B
 = 9.24 × 10–24,            M = 1.67 × 10–27 kg

Bd
dz

 = 200 T/m

F
z
 =

Bcos d
dz

F
z
 =

Bdz
dz


z
 = – S

2s
eg
m

 = –
2s s
eg m
m



So, F
z
 =

B–
2s s
e dg m
m dz


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=
– 34–19

–21
–31

1.6 10 6.6 10
200 1.85 10

4 3.14 9.1 10

D = 21 J
2
a

=
2

H

F1 L
2 V

z
m

=

2–21

–27 3
1.85 101 0.5

2 1.67 10 3 10

= 6
6

0.250.54 10
9 10

= 0.01511 m = 1.5 cm
Total = 2D = 2 × 1.5 = 3 cm

(b) (i) Write down the normal electronic configuration of Carbon atom (Z = 6)
and obtain the spectral terms arising from equivalent electrons. (4)

(ii) The quantum number of two optical electrons in a two valence electron
atom are

n
1
 = 6,  l

1
 = 3,  s

1
 = 1/2

n
2
 = 5,  l

2
 = 3,  s

2
 = 1/2

assuming j-j coupling, find the possible values of J. (3)
Ans. (i) Electronic configuration of Carbon atom (Z = 6)

1s2  2s2  2p2

So, Angular momentum is determined by two 2p electron two electrons hair
spin 1/2 so, after coupling

Total spin  S = 0, S = 1
Two individual coupling of l = 1, yields

L = 0, 1  or  2
But from principle  total wavefunction has to be antisymmetric. So, spin and

orbital parts have opposite symmetrics.
S = 0      Antisymmetric,     S = 1  = Symmetric
L = 1    Antisymmetric,      L = 2, 0  Symmetric

States = 1S0,  3P0,  3P1   or  1D2.
The one which has lowest energy will be ground state of carbon.
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According to Hund's rule, S = 1,   L = 1
So, J = 0, 1, 2       [L – S to L + S)
Since 2p shell is less than half filled

J = 0
So, 3P0  Lowest energy      spectral term.
(ii) n

1
 = 6, l

1
 = 3, s

1
 = 1/2

n
2
 = 5, l

2
 = 1, s

2
 = 1/2

J
1
 = 1 1

1 73
2 2

l s

J
2
 = 2 2

1 31
2 2

l s

J = 1 2 1 2J – J .............. J + J

=
7 3 7 3– .................
2 2 2 2

= 2, ........................ ,5
J = 2, 3, 4, 5     Possible value of J.

(c) (i) What is spin orbit coupling. Calculates the change in the energy level
due to this. (5)

(ii) Write the term symbol for the ground state of the hydrogen atom in the LS
coupling scheme. (2)

Ans. (i) Spin Orbit Coupling : When we consider the splitting of structural
lines due to an interaction between  the magnetic moments due to spin and the
orbit motion of the electron, the effect is called spin orbit coupling.

• Consider hydrogen atom with atomic namber z,moving in a arcular orbit of
radius with speed varound nucleus.

I = 2 2
ze zev
r r
v

Magnetic field = B = 
0 0

2
I

2 4

zev
r r

(Vector)B = 0
2

( )
4

ze
r p

mr
[P = mv]
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B  = 2 3
0

L
4

ze
mc r 0 2

0

L
1&

r p

c


s
 = magnetic moment due to spin then

H
spin

 – orbit =
–1

. B
2 s

Put 
s
 =

–
S

2
ge
m

H
spin

 – orbit =
–1 – S

. B
2 2

g e
m

H
spin

 – orbit =
2

2 2 3
0

–
L . S

8

z e

m c r

J  = L S

J2 = J . J  = 2 2L S 2 L . S

L . S  = 2 2 21 (J – L – S )
2

E
spin

 – orbit = <H
spin

 – orbit)

=
2 2 2 2

2 2 3
0

J – L – S

16

z e

m c r

where, 

2 2 2 2 2 2
*

3
J – L – S J – L – S

2

nis

ni j dv
r

Eigen value of J2, L2, and S2 are J (J + U h2, (L (L + 1)h2  and  S (S + 1) h2

S =
1
2

,   So,  2 2 23S(S + 1)
4

 
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So, E
spin

  – orbit =
2 2

2 2 3 3
0

3 1J (J + 1) – ( 1) –
416

z e
l l

m c r r



3
1
r

 =
3

3 3
0

1 ( 1)
2

z

a n l l l

a
0
 =

2
0
2

4

me



E
spin

  – orbit =
2 4 4

32 ( 1) (2 1)

mc z

n l l
              For  J = 

1
2

l

=
2 4 4

32 (2 1)
mc z
n l l

                        For  J = 
1–
2

l

(ii) Term symbol for hydorgen (H2) in LS cauplying scheme :
2P

3/2
&  2P

1/2
l = 1, S = 1/2

J =
3 1,
2 2

J = l + S, l – S
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