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Q1l(a)

Ans. 1.The laws of physics all take the same identical form for all frames of reference in uniform
relative motion i.e. For all inertial frames of reference.

2. The velocity of light in free space is same relative to any inertial frame of reference i.e. it is
invariant to transformation from one inertial frame to another for all observers irrespective of
their state of motion.

Q1 (b) Ans. Inertial Frame of Reference: A reference frame in which Newton’s first law of
motion holds good, is known as an inertial frame of reference. All frames of reference, moving
with a constant velocity with respect to an inertial frame , are also inertial frames of reference.
Ex: A train moving with uniform velocity is an inertial frame.

Non Inertial Frame of Reference: A non inertial frame is one which is accelerated (linearly or
due to rotation) with respect to fixed stars. Newton's second law of motion is not valid in such a
frame of reference, unless we introduce a force «called pseudo - force.
Ex: A freely falling elevator may be taken as a non inertial frame.

Q 1(c) Ans.

1) Inertial mass: This is mainly defined by Newton's law, F = ma, which states that when a force
F is applied to an object, it will accelerate proportionally, and that constant of proportion is the
mass of that object. In very concrete terms, to determine the inertial mass, you apply a force of F
Newtons to an object, measure the acceleration in m/s?, and F/a will give you the inertial mass m
in Kilograms.

2) Gravitational mass. This is defined by the force of gravitation, which states that there is a
gravitational  force  between any pair of objects, ~which is given by

F = G m1 moa/r?
where G is the universal gravitational constant, m: and m; are the masses of the two objects, and
r is the distance between them. This, in effect defines the gravitational mass of an object.

Q 1(d) Ans.
The law statas that the sum of vectors remains same Irrespective of their order or grouping in which they are arranged.
Consider three vectors A, B and &
Applying "head to tail rule® to abtain the resultant of (7\’% é.) and ( E’ + (-’)
Then finally again fihd the resultant of these three vectors :
OR = OP + PR =
or P l‘ ()
> -
- - - -
R=A+(B+C) — (i) e
and \’ v \ . -
OR =~ 0Q + QR “ \ (
or \\
- - - - -
R“(A+B)+C - —e (1) O -
R

thus, from (i) and (i1)

=y

-

A+(B+C) =(A+B)+C

This fact Is known as the ASSOCIATIVE LAW OF VECTOR ADDITION

Q1 (e)Ans
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Q 1 (h) Ans.

Hooke’s law states that, for relatively small deformations of an object, the displacement or
size of the deformation is directly proportional to the deforming force or load. Under these
conditions the object returns to its original shape and size upon removal of the load.
Mathematically, Hooke’s law states that the applied force F equals a constant k times the
displacement or change in length x, or F = kx. The value of k depends not only on the kind of
elastic material under consideration but also on its dimensions and shape.


https://www.britannica.com/science/deformation-mechanics
https://www.britannica.com/science/displacement-mechanics
https://www.britannica.com/science/force-physics

Elastic limit: the maximum extent to which a solid may be stretched without permanent
alteration of size or shape.

Breaking stress: Breaking stress is the maximum force that can be applied on a cross sectional area
of a material in such a way that the material is unable to withstand any additional amount of stress
before breaking.

Breaking Stress = Force / Area

Q 2(a) Ans.
Axes: Now we shall choose a set of axes. The simplest set of axes are known as the
Cartesian axes, x -axis, y -axis, and the z-axis. In Figure 2.1.1, we draw these axes.

x

Figure 2.1.1 Cartesian coordinates

Then each point P in space our S can be assigned a triplet of values (x7.¥y.zZp). the
coordinates of the point P . The ranges of values of the coordinates are: —=0 < x, < +90,
—o0 < Yp < 400, —00 < Zp < 90,

In two dimensions one defines the polar coordinate (p, 9) of a point by defining p as the radial distance from

the origin O and 8 as the angle made by the radial vector with a reference line (usually chosen to coincide with

the x-axis of the cartesian system). The radial unit vector ,5 and the tangential (or angular) unit vector 8 are

taken respectively along the direction of increasing distance p and that of increasing angle 8 respectively, as

shown in the figure.

Relationship with the cartesian components are



By definition, the distance p > 0. we will take the range of angles Btobe D < 8 <2« (It is possible to
define the range to be —7 S g < 7). One has to be careful in using the inverse tangent as the arc-tan

function is defined in 0 <_: 8g<m.1f 1 is negative, one has to add 7 to the principal value of 8 calculated by

the arc - tan function so that the point is in proper quadrant.

Q 2(b) Ans.
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Q 2(c) Ans.
Note that the vector G = B x C is perpendicular to the plane on which vectors B and
C lie. Thus, taking the cross product of vector G with an arbitrary third vector, say 151,
the result will be a vector perpendicular to G and thus lving in the plane of vectors B
and C. Therefore, one can express the vector F=A x G as a linear combination of the
vectors B and é, ie.,

I-T" — m]§ =1 n'(-j
Taking the scalar product of the both sides of this expression with vector 15;, and noting
that A - F =0 one obtains

m(A-B)+n(A-C)=0
For this equality to be valid {or any A', B and C‘, one is tempted to write
m=A(A-C)," n=-A(A-B)

in which the unknown proportionality constant A has been introduced so as serve for the
above solutions to hold true with no loss in generality.
Thus, one has
F = Ax(BxC)
-~ A{(A-C)B-(A-B)C}
Selecting arbitrarily A= R, B = j, and C = R, for instance, and substituting in the
above equality, one obtains A = 1.

Hence, one eventually obtains the vector identity

— —

AxBxC=(A-C)B-(A-B)C



Q 3(a) Ans.

The center of mass formula is for a figure with density p(r) is given by

[y plx)rdv
[y p(x)dV

In this case, because the density is constant, we can just set it equal to 1 and then it effectively drops out of the
equation.

R:

. b
In spherical coordinates, the upper hemisphere of a ball of radius Risgvenby 0 <r < R 0<8 < 7

Now we need to plug these into the two integrals in our center of mass equation:

[ [ " s
[0
[~ cas(@lf; 53 / “ap

(2m)

S’wl"’awlﬁ’.

w‘

Note that this part is just the volume of a3 hemisphere, which you could have also obtained by halving thé known
volume of a sphere. Confirm that this produces the same result
Now for the other integral: 1

/ / / rdV = / /:/2 /‘ 72 sin(6) |rsin(#) cos(cp)x + rsm(e) sin(p)y

+ rcos(B)z] drdBdcp
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Putting these together, we thus find that the center of mass is at
=i
a4 % 3
R=2= —sh=
3

3
So the center of mass of a hemisphere is F of the radius along the axis of symmetry from the flat side of the

hemisphere.
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Q 3(c) Ans.
The work-energy theorem states that the work done by all forces acting on a
particle equals the change in the particle's kinetic energy.

Now for infinitesimal displacement calculations and forces whether variable or
constant, we can write from the definition of work,

dW = Fdzx
Now let the total work done is W, and the displacement is fromzgtox

Integrating the both sides we get,



0 zg
W = /Fd:z:
o
r dv
W = m/Ed:c
o
W = m/'udv
vp
W = %mv2 — %mvg
W = AFE;
(Proved)

Q 4(a) Ans. A rocket in its simplest form is a chamber enclosing a gas under pressure. A small
opening at one end of the chamber allows the gas to escape, and in doing so provides a thrust that
propels the rocket in the opposite direction. As the rocket moves its mass decreases which gives
an additional thrust by conservation of momentum.

Consider, a rocket of mass mg take off with velocity vg from ground

[
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it o) tedt
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e
jh i

'
v

Let the fuel burn at the rate of dm/dt and burnt gases eject with velocity u w.r.t. rocket.
Let at any instant t, v be the velocity of rocket and m be the mass of rocket.

Therefore velocity of burnt gas ejected w.r.t. ground is (v — u).

Here, fuel is burning at the rate of dm/dt.

Therefore in time dt, dm mass of the fuel will burn and velocity of rocket increases by dv.

Momentum of rocket at any instant js,

Py = mu



Momentum of (rocket + burnt fuel) at t+ dt is,
pz = (m—dm)(v+adv) + dmiv+ dv—u)
= mv + mdv — udm
. Change in momentum in time dt is,
dp=pz — Py

= (mv + mdv — udm) —mv
= mdv — udm

We know,

Impulse = Change in momentum

Here, impulse is due to gravitaional force.

— mg dt = mdv— udm
= dv = uﬂ.—m — gidt
m
Here, we have
'm’ is the mass of rocket, and
dm is the mass of gas gjected.
As the fuel burns the mass of rocket decreases.
Therefare, 1o calculate the velocity of rocket at any instant in terms of mass of rocket, m must be replaced by 'dm’.
dm

SodvE —u—— = glt
= d

Integrating both sides,

v m 1
fﬂdv=—uLadFm—ngt

W
= vﬁo = - u(an)lmo— gl

= wv—w = —ullnm - Lnmg,] — at

m
=y + Ln °J—t
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Rockets have multiple stages because the effectiveness of a rocket is inversely
proportional to its mass and using stages allows us to reduce the mass of the
rockets as it operates.

Tsiolkovsky's rocket equation tells us:

m,

i

Av=v,In—
M; " In words that means that the change in velocity achievable is
equal to the effective exhaust velocity times the natural log of the initial mass
divided by the final mass. So we can see that the greater the ratio between the
initial and final mass of the rocket, the more effective the rocket can be.

In the below picture are depictions of two rockets. The one on the left is a single
stage rocket. The one on the left is a multi-stage rocket.

Q 4(b)
2 @=) m = )OJm_ r=(ol +64yYy cm
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Q 5(a) Ans. In a pure translatory motion, all the particles in the body, at any instant of time, have
equal velocity and acceleration. Kinetic energy is a scalar quantity with no direction associated
with it.

1
KEt.rmlslatiun — 3 771'1732 + 5 7”2'0-2 o 0 5 Vn.'\"v2
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In case of a rigid body in pure rotation, all the particles on the body rotates in circular motion
with their centers lying on the same axis

- 1 ¥
K EP.rr-r.-H-ah'ur.:uJi- =

; Ilhf".‘"‘:- ]

F

KE = 1/2. (1/2.MR?)(V/R)? = 1/4. MV?
Hence the ratio of these K.E. is 1:2.

Q 5(b) Ans.
Let a body be moving under a central force law. By Newton's Second Law its motion is given as
follows:

mA =F.

X

Here, m is the mass (assumed constant), the position vector of the particle is ==, the velocity

d
vector is V= ﬁland we have:
d?
é = T, p<k,
dt?

F = g(X.X)X.

Here g(u) is a function representing the strength of the force which is assumed to depend only on
the distance to the center and the force £.is in the radial direction, so Fis proportional to the
position vector X

Now put JZWXXK, so Lis the "torque" of the momentum vector mV
Then we have:

d d
() =m— (X xV) =

d d
= m(S(X)) X V 4 mX x (V)

=mV XV4+mX x A=XxF=g(X.X)X x X =0.



So J is constant for a central force law.

The quantity Jis called the angular momentum of the motion and we have shown that the
angular momentum is constant for a central force law. But from its definition, we have
X.J=0,

But this is the equation of a plane through the origin, with normal J . S0 we have proved that
under a central force law, the motion lies in a plane. The only exception might be the case that
J is zero. Then we have V' = sX |, for some scalar s. From this it is not difficult to show that

the motion is along a straight line, so is planar in this case also. Henceforth we assume that Jis
non-zero. Then the motion is in a plane, which we may take to be the (x,y)-plane.

This implies that

where,

N = (mrz%?) — constant

4 A = areal velocity
L (rxv)

<|




Q 6(a) Ans.

When the motion of an oscillator reduces due to an external force, the oscillator and its motion
are damped. These periodic motions of gradually decreasing amplitude are damped simple
harmonic motion. An example of damped simple harmonic motion is a simple pendulum.

In the damped simple harmonic motion, the energy of the oscillator dissipates continuously. But

for small damping, the oscillations remain approximately periodic. The forces which dissipate
the energy are generally frictional forces.

Tirme 9

Let’s drive our damped spring-object system by a sinusoidal force. Suppose that the x -
component of the driving force is given by

F (t)= F,cos(wi) , (23.6.1)
where F, is called the amplifude (maximum value) and @ is the driving angular
Jrequency. The force varies between F, and —F, because the cosine function varies

between +1 and —1. Define x(f) to be the position of the object with respect to the
equilibrium position. The x -component of the force acting on the object is now the sum



F_= F,cos(wt)— kx— b% : (23.6.2)

Newton’s Second law in the x -direction becomes

dc  dx
F w)—kx—b—= — . 23.6.3
o cos(wt) = m 7 ( )

We can rewrite Eq. (23.6.3) as

d’x &
F,cos(wt)=m ZC +pZ
dt* dt

We shall now use complex numbers to solve the differential equation

+hx (23.6.4)

d*x ax
E wt)=m—+b—+kx . 23.D.1
o COS(@r) =m det . dt ( )

We begin by assuming a solution of the form

x(t)=x,cos(wi+¢) . (23.D.2)

where the amplitude x; and the phase constant ¢ need fo be determined. We begin by

defining the complex function
() =g Y . (23.D.3)

Our desired solution can be found by taking the real projection

x() = Re(z(?)) = x,cos(wt + ) .

Qur differential equation can now be written as

F;}Emzmd f+b£+kz )
dt” dt




We take the first and second derivatives of Eq. (23.D.3),

d= o
E(r): ixe ™ = iwz . (23.D.6)

d’z 2, iwird) 2

e () =—xe =—mz . (23.D.7)
t

We substitute Eqs. (23.D.3), (23.D.6), and (23.D.7) into Eq. (23.D.5) yielding
Fe™ = (—w’m+ biw + k)z = (~ m+ biw + k)x "™ . (23.D.8)
We divide Eq. (23.D.8) through by €™ and collect terms using yielding

o F,im
xe" = T : (23.D.9)
(w,” —w”)+i(b/ mw)

2 i
where we have used @, = k/ m . Introduce the complex number

z,=(0, -0 )+i(b/ mo . (23.D.10)
Then Eq. (23.D.9) can be written as

xet =L (23.D.11)

Multiply the numerator and denominator of Eq. (23.D.11) by the complex conjugate
7, = (0, ~ ")~ i(b/ m)w vielding

BB gt
mzz, m (@, —w°) +(b/m)ywn’)

0

where
E, (m[,2 —w?)
m (w," - ) +(b/m)i’w*)

(23.D.13)



F, (b/ m)w

=0 — — . 23D.14
m (w," - ) +(b/ m)’ ®*) ( )
Therefore the modulus x; is given by
5 ] ] F J'I’m
=+ =—F2 — . (23.D.15)
(0,"—@~ )y +(b/ m) ®)
and the phase is given by
—(b/ m)w
fp:mn‘l(wu):% . (23.D.16)
('w{p —w )
Oscillator Equation. The solution to is given by the function
x(2) = x, cos(@t + ) . (23.6.5)

where the amplitude x, is a function of the driving angular frequency @ and is given by

F;]fm

- — 3 (23.6.6)
((bfm)zm‘ +(w,"— )’

x (@)=

The phase constant ¢ is also a function of the driving angular frequency @ and is given

by

D) = tan_l(ﬁfm] : (23.6.7)
|__-.w‘- _wﬂL
In Eqgs. (23.6.6) and (23.6.7)
w, = x (23.6.8)
m

is the natural angular frequency associated with the undriven undamped oscillator. The x
-component of the velocity can be found by differentiating Eq. (23.6.5),

v.(f) = %@) = —x, sin(f+0) (23.6.9)

where the amplitude x, (@) is given by Eq. (23.6.6) and the phase constant ¢(@) 1s given
by Eq. (23.6.7).

Q 6(b) Ans



Q7(a) Ans.

Relation between modulus of rigidity (G) and
modulus of elasticity (E):

E =2G 1+
where E = modulus of elasticity
1] = Poisson's ratio

G = modulus of rigidity



Relation between modulus of elasticity(E) and
bulk modulus(K):

We known that when body is subjected to a tri-axial stress system, its volumetric strain is
given by

E"-_u" - EVJ"‘._.I' - {(Ux+lj~(+l3_=: }J.'E}{1 _ 2“}
Here oy =0y =0z=0

rev = ()1 -2p)

but K =a/ey=0/! (%) - 2p)
- K = E/3(1-2p)
| -~ E="3K(1 - 20) |

Relation between modulus of elasticity (E),
modulus of rigidity (G) and bulk modulus(K):

We know that, E = 2G(1+p) (i)
And E = 3K(1-2p) (i)
Form (i) 14 = —E&
E
=z =l

Equating this value in (i)

E=3K [1-2(2-1)| = 3k [1-2+2]

E=3K [3-2|=3K]

3G—E]
G

EG = 3K(3G — E) = 9KG — 3KE
~ EG + 3KE = 9KG
« E(G +3K) = 9KG

9KG
G + 3K




Q 7(b) Ans.

The Lorentz transformations (or transformation) are coordinate transformations between two
coordinate frames that move at constant velocity relative to each other. A "stationary” observer
in frame F defines events with coordinates t, X, y, z. Another frame F' moves with velocity v
relative to F, and an observer in this "moving"” frame F’ defines events using the coordinates t’,
Xy, 7.

The coordinate axes in each frame are parallel (the x and x’" axes are parallel, the y and y' axes are
parallel, and the z and z' axes are parallel), remain mutually perpendicular, and relative motion is
along the coincident xx’ axes. At t = t' = 0, the origins of both coordinate systems are the same,
(X’ y’ Z) = (X’a y'a Z’) = (09 O’ 0)

If an observer in F records an event £, x, ¥, z, then an observer in F" records the same event with coordinates!

Lorentz boost (x direction)

P nr

=y (z — vt)

[

I
2

o B
|
Mo

r

where v is the relative velocity between frames in the x-direction, ¢ is the speed of light, and

[

"‘J' =

V1-%

(lowercase gamma) is the Loreniz factor
According to the theory of relativity, time dilation is a difference in the elapsed time measured
by two observers, either due to a velocity difference relative to each other, or by being differently
situated relative to a gravitational field. As a result of the nature of spacetime,? a clock that is
moving relative to an observer will be measured to tick slower than a clock that is at rest in the
observer's own frame of reference. A clock that is under the influence of a stronger gravitational

field than an observer's will also be- measured to tick slower than the observer's own clock.

At
A = —20
! I

This expresses the fact that the moving observer's period At' of the clock is longer than the period
At in the frame of the clock itself.

Q 7(c) Ans.


https://en.wikipedia.org/wiki/Coordinate_transformation
https://en.wikipedia.org/wiki/Coordinate_frame
https://en.wikipedia.org/wiki/Theory_of_relativity
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Observer_(special_relativity)
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Classically we would add the speeds to get 1.8¢, which is obviously not allowed. In relativity you
simply use the relativistie veloeity addition formula:

u+7v
- 1+uw/e

Where u and v are the velocities of the particles as seen from some reference frame, and V is the
velocity of one particle in the rest frame of the other, i.e., the relative velocity when we consider one
of the particles to be stationary. Plugginginu = v = 0.9¢, we get V = %c == ().9945¢.

Edit: As pointed out by Alfred Centauri, the above explanation is perhaps too simplistic. A more
rigorous version would be the following:

Let's take our particles to be moving in the x direction, with particle 1 moving in the positive
direction and particle 2 moving in the negative direction. As seen by particle 1, our velocity is —0.9¢
(note the sign!). As seen by us (that is, the lab frame), particle 2 is moving with a veloeity equal to
—0.9¢. The veloeity addition formula tells us how to find the velocity of particle 2 with respect to
particle 1. If V' is this veloeity that we are trying to find, % is our veloeity with respeet to particle 1
and v is particle 2's veloeity with respeet to us, then:

u+v

= e ~ —[].'!3‘9-‘-156
1+ uv/c?

This time we get the correet sign, since, relative to particle 1, particle 2 is moving in the nezative
direction.



