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Q 1. What is periodic motion? Explain harmonic and simple harmonic motion.

Ans. The repeated motion moving the particle along a definite path on regular intervals of time
is called periodic Motion and interval of time after which the particle repeat its path is called
time period (T) of the periodic motion.

In general, there are two types of periodic motions

() Harmonic motion- If the particle undergoing periodic motion covers the same
path to and fro about a mean position, the motion is known as vibratory or
oscillatory motion. This motion is bounded on both sides within a well-defined
limit. This motion is also known as harmonic motion. Such motion is
associated with musical instruments.

(i)  Simple harmonic motion-If the displacement of the particle is equal on both
sides, the motion is known as Simple Harmonic Motion (SHM). This is the most
fundamental type of motion and all other periodic motions, whether harmonic
or non-harmonic, can be achieved by a suitable combination of two or more
simple harmonic motions

Q.2. Why a system of particle oscillates.

Ans. There are basically two main reasons which are responsible for the oscillation in the
system and two basic properties of the system. These are elasticity and inertia.

When a body is in equilibrium, the net forces acting on the body are balanced. When we
apply a force on the body, the system is displaced from its position in direction of force w.r.t.
body through a distance .

When the force is removed from the body, a restoring force comes into play which tries to
restore the original position of equilibrium of the body. It' tries to restore y to zero. This
is possible by imparting a suitable negative velocity dy/dt to the body. The elastic
properties of the system determine the magnitude of this restoring force.

The inertia of the body tries to oppose any change in velocity. When vy = 0, i.e., the body
reaches the equilibrium position, the negative velocity is maximum and a negative
displacement is produced. The body moves to the other side of the equilibrium position.
Now the restoring force becomes positive. Now it increases w. The restoring force has to



overcome the inertia of the negative velocity. The velocity goes on decreasing and becomes zero.
But by this time the displacement becomes large and negative. The process is now reversed.

Thus elasticity and inertia are two responsible causes for the oscillation of a body. let's
suppose a particle free to move on the x-axis, is being acted upon by a force yen by,

F=-kx"

Here, k is a positive constant. Now, following cases are possible depending on the value
of n.

(a) If n is an even integer (0,2,4....etc), force is always along negative x-axis,
whether x is positive or negative. Hence, the motion of the particle is not oscillatory.
If the particle is released from any position on the x-axis (except at x= 0) a force in
the negative direction of X-axis acts on it and it moves rectilinearly along negative x-
axis.

(o) If nis an odd integer (1,3,5, ...etc), force is along negative x-axis for x O,
along positive x-axis for x <0 and zero for x = 0. Thus, the particle Will
oscillate about stable equilibrium position, x = 0. The force in this case is called
the restoring force. Of these, if n = 1, i.e., F= -kx the motion is said to be SHM.

Q. 3. Prove that the velocity of a particle in SHM is ahead of its

displacexr.lent by /2. Also draw graphs for dispacement, velocity and
acceleration for the particle executing SHM.

Ans. Let the displacement equation of the particle executing SHM be given

» by,
y = Asin (ot+ ) (D)
Differentiating (i) w.r.t. t, we have,
d
v =2

7T A o cos (ot + ¢,) =V, cos (ot + d,)

where V| = A o is called velocity amplitude of the particle.

V. = V sin [(m ¢o)+g~] ---(11)

s 1t;hf 1
2or4 or a cycle.

Differenting (i) w.r.t. t we have, acceleration given by.

av
dT
= (A0) sin [(0t +¢,) + =]
where (A0?) is acceleration amplitude.

Thus, velocity is ahead of displacement by

a = = -Ap® sin(wt + ¢y)




Thus, acceleration is ahead of displacement by 7 or balf of a cycle; or

acceleration is ah socit: A L :
ahead of velocity by or 5 or (1/4) of a cycle.
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Q 4. Deriving the expressions for kinetic, potential and total energy
of a particle executing S.H.M. plot graph for the same.

Ans.K inetic Energy. The Kinetic energy of the particle is,

1 1
K = _2.mv?‘ -.:Em A? sin? (U)t'+¢)




Since, gin? B = 1— cos? O
and using x = A cos (wt + ¢) for the displacement, we can also express the
kinetic energy as,
1 :
K — Emm‘ZA2 [1 - cos? (ot + §)]
which can be written as,

1 1
K = gmo’ (£-x)= 5 kW -2

From this expression we can see that, the kinetic is maximum at the centre
{(x = 0) and zero at the extremes of oscillation (x =+ A).

Potential Energy

To obtain the potential energy we use the relation,

dU ~ dU : ¥
oS (el = k)

({.‘
[aUu = [ixdx
0

0

1o tmy N
U = = hs=cmas”

2 2

in@_z:g‘;sg» ;ilihPOtengeil energy has minimum value at the centre (x = 0) and
ases as the particle approaches either extreme of th i S
Total Energy of the oscillation (x =+ A).

Total energy can be obtai :
2 a : NG
Therefore, ined by adding potential and kinetic energies.

v 1 : _
B =ikl ”2"'7"(”2 (A% x2)+%m0)2x2
Televiots
B = =—ma A
9 w
i E = 1ga
2 (as mw® = k)

Which is a consta : .
nt quantity. This w :
conservative. > 15 was to be expected since the force is



Therefore, we may conclude that, during the oscillations, there is a continuous
exchange of kinetic and potential and kinetic energies. While moving away from the
equilibrium position, the potential energy increases while the kinetic energy decreases.
When the particle moves towards the equilibrium position, the reverse happens. The
figure shows the variation of total energy (E), potential energy (U) and kinetic energy (K)
with displacement (x)

Q 5. Which of the following functions of time represent (a) simple harmonic, (b) periodic
but not simple harmonic, and (c) non-periodic motion? Give the period for each case of
periodic motion: (o is any positive constant).

(i) sin ot — cos ot.

(it) sin?® ot.

/
£ 2(,-)1‘,\‘ :

\ 4 )

(iv) cos ot + cos 3ot + cos 5ot.
(U) e-.u,zt‘.’,

(vi) 1+ ot + o’t?

(iii) 3 cos



Ans. (7) f(t) = sinot-—-cosot; Put1=rcos0®=rsin9

f&) = rsin (0f--6)
(@) asrsinf® = 1,rcos8=1
P (sin® B +cos’0) = 1+lorr=fg
From () we have, f(t) = ./2 sin (ot —9) ((29)
Again, tan6 = lortan'(1)=0
or tan? tan (n/d) = O L0=n/4
Putting in (i1) we get,
f() = .J2sin (ot— n/d) (Tir)

Equation (17t) can be written as,

() = /2 sin [( ok Jz] b [w(t Eﬁ)_ﬁ]

w 4

<

Thus, f(¢) represents SHM and its time period is givenby,

21

T ==

w
" : 1 ; : ;
(11) f(t) = sind ot= — (3sin 3 ot —sin 3 of) (@)

4

It represénts two SHMs separately, but their sum does not represent SHM.

: 3 27 :
The period of functior. 1 sin otis given by 7T'= i and the period of function

. S : s B
sin3otisgivenby, T = — =
w 3
Thus, the least time taken by the function to repeat the same value 1s T
21
w

=

Hence sin® wt is an example of a periodic function which is not SHM.



& )
(i) @ = 3¢is| & —2wt} = 3 cos (sz‘, =X ]
4 4
27 )
T S ‘—)‘_‘ o T —
2w w

: b
Thus, 3 cos (2 ot — n/4) represents SHM, with, T'= >

(tv) f(t) = cos ot + cos 3wt + cos bot
The given function is a combination of three independent SHMs, but their
&m is not SHM.

2x  2m  2m

Time periodsare ——, o=, ==
P w’ 3w’ 5w

¢ Gid
2n

Time period of f(1) is given by, T = 74

Therefore, the above function is periodic, but not SHM.
(v) ) = Gt when t o , f(t) > 0

|

‘ .. It 1s a non-periodic function
(vr) ) = 1+ot+e’? whent—> oo, f(t) >
Thus, the above function is a non-periodic function.

Q.6. what is simple pendulum? Explain in detail.

Ans. A simple pendulum is a device consisting of a spherical bob suspended by an
inelastic massless 'string which is fixed to a rigid support. Let us suppose the mass of the
bob be m and length of the string is |




When the particle is pulled aside to position B so that the string makes an angle 6. with the
vertical OC and then released, the pendulum will start to oscillate between B and the
symmetric position B'. The oscillatory motion is due to the tangential component Fr of the
weight mg of the particle. This force (Fr) is maximum at the point B and B’, and zero at
C. Thus, we can write,

F, = —-mgsin0@
Here, minus sign appears because it is opposite to the displacement.
xr = (G4
sma, = —-mgsind (D)
AL
Here, a; = lo where o = —
dt
and sin @ =~ O for small oscillations
mia = —mgb
(&)
| 0 x l |
or |a =
)
T = 2n4ll-
o
T = a2
¥ e

Note that the period is independent of the mass of the pendulum.

Following points should be remembered in case of a simple pendulum.

1. For large amplitudes, the approximation sin 6~0 is not valid and the calculation of
the period is more complex. The time period, in this case, depends on the
amplitude g, and is given by,

——

Vel +$5J



The angle 60 must be expressed in radians. This is sufficient approximation for most
practical situations is a simple pendulum.

(2) If the time period of a simple pendulum is 2 seconds, it is called seconds pendulum.

(3) If the length of the pendulum is large, g no longer remains vertical but will be directed
towards the center of the earth and, the expression for time can be written as,

oo 13
F e ]

Here, R is the radius of earth. From thia expression we can see that
= )

—

: ) YT 5 1
(a fl< R,“ momed Lo = T
) ifl<< Z»Rde .er\;/g

1 R
(b) as ] c>o,7 —>0andT=2xn V and substituting the value of B and g

we get T = 84 6 minutes.

(4) Time period of a sim ple pendulum depends on acceleration due to gravity

(asToo —1 ) 2
&' | 1z so take geffl inT=2gx

: \,g . Following two cases are possible :

@) If a stmple pendulum is in a carriage w

' : hich is accelerating with
acceleration , 3, then

geff = é"— 5.

e.g., ‘i the acceleration 5 is upwards, then

e

= gtaandT=2xn é‘:‘a‘

Eoff

If the acceleration g is downwards, then (g>a)



e

léeﬁ'l = g—aand T=27 \[g—‘a

If the acceleration 5 is in horozontal direction, then

: léeffl = \/;Z_:g?

~ Inafreely falling lift g, +=0and T=w, i.e., the pendulum will not oscillate.

(ii) If in addition to gravity one additional force |, (e.g., electrostatic
force ¥, )is also acting on the bob, then in that case.

—

geffzg

S[*-::l

Here, m is the mass of the bob.
(5) Due to change in temperature, length of pendulum and so the time period
will change. If A6 is the increase in temperature then. -

l
~1I' = [ (1+aAB) or S 1+aAB

Tl ; lv
SENCRE S o 12
T \/; o p)

| f A 1
— —1=--aAD
e
PR .
or - —aAB
or 7 zoc
1
or AT=—TOLA6

.N ote : In case of a pendulum clock time is lost if T'increases and gained if
ecreases. Time lost or gained in time ¢ is given by,
AT

Al =—— ¢
Tl



eg,ifT=2s, T'=3s,then AT=1s

1
.. Time lost by the clock in 1 hr. At = 3 X 3600 = 1200 s

Q.7. Give the theory of compound pendulum. Show that there are four points of the
pendulum having the same time period.

Ans. In the case of a compound pendulum, the oscillating mass has dimensions comparable to
the distance between the axis of suspension and its center of gravity. As rigid body capable of
oscillating in a vertical plane about a horizontal axis passing through the body other than the
center of gravity is regarded as a compound pendulum.

Centre of suspension is the point of intersection of the horizontal axis of rotation and the
vertical plane through the centre of gravity of the compound pendulum. This is indicated
by S.

Let the Fig. represent a compound pendulum of mass m. Let G be the center of gravity. The
distance between the center of gravity and the center of suspension is known as the length
of the compound pendulum and denoted by 1.



Thus GS = |, When in equilibrium, G will be below S.

Let us displace the pendulum slightly from a mean position towards one side through an
angle 6. Let G” be the new position of G.

The will cause in restoring couple produced is the couple formed by weight W= mg acting
through the center of gravity G vertically downward and the reaction R = mg acting vertically
upward at the point of suspension S.

The restoring couple = —mg (G" N) = mgl sin6. The negative sign indicates that the couple
is oppositely directed to the displacement 6.

If angular displacement 6 is small, then sin6 = 6, so that restoring couple = mglo
If I is the moment of inertia of the body about the horizontal axis passing through S then

o = d?0/dt? is the angular acceleration.

And we can write,

d*e
deflecting couple = Ia =1 g2

Since mg is the weight of the pendulum. its equation of motion can be written

ZHON\ |
dii N ik
d*0 -
or D) e ﬂ‘gée
dt” I
d-e mgl
or —5 = —w 7 = ——
7 ®* 8, where o T
deote
or ai +@0 = 0.

This 1s the differential equation of motion of the compound pendulum. The
lution of the above equation is,



0 = Asin (ot+¢) 4 --(2)

, d0 , 2
“and e A w cos (ot + §) (@)

The values of constants A and ¢ can be determined from the initial conditions.
At t = 0, 8=6
do

g i g T

I

(o2
il

<

A sin (ot + ¢)

= Aw cos (ot + ¢)

= cos ¢ B E=t=0]
/2 : o

= A sin (0t +n/2)

= Acosot

= §,at (=0,

= Acos 0%

= A

= B,cosml __

Here 0 represents the angular amplitude and » represents the initial phase.
; 0 = 6§ cosmt '

() Gives us,
(i) Gives us,

D DD e DD
1l

o

DD
I

z
1l

LR ey
If we replace ¢ by t,’r"'(; , the equation does not change.

27
Thevefore, time period, 7'= 7

or T = mg%

ok T = 2mil=—= .(i17)

where ['is the moment of inertia.



The above relation gives us the time period of & compound pendulum.

If T, is the moment of inertia of the compound pendulum about an axis
passing through @, then

I = +imf: [Using axis theorem]
= mK*+mpP
= m K>+
Here K is the redius of gyration of the pendulum about the parallel axis
through G.
The relation (i17) Gives us,

2 72y
T = ox /Z‘ﬁ_K +6)
mgl

I

fesryg
il

13

9

-~

If we represent [ + % =L

- o
en, = 2n P

The length, L, is known as the effective length of the compound pendulum.
Itis also known as the length of equivalent simple pendulum. '




2

k*
We take a point on the side opposite to S from G at a distance = from G.

This pomt 1s known as centre of oscillation.

‘A horizontal axis passing through 0 parallel to the axis of suspension is
wn as axis of oscillation.

Now SO = SG'+ HG
k2
= 1+T
1 kz 1
t (’o = T:l

=
4]
8
e
1
bo
=
i
w [
o

...’ltg

should be noted that the point of ‘suspension and the centre of oscillation
mterchangeable.

In this case,

=1

Tr -

This confirms mterchangeablht}
In the case of a compound pendulum there are four pomts colh:near with the

centre of grawty about which the time periods are the same.



We have, Ps— 21t¢

Il

T 47 B>
Squaring both sides, 7% — |+

( I* (“—gTz }l +k = 0
or — 41t2 A— 5

Let I, and [, be the roots of this quadratic equation

gr?
l1+l2 = -:1-7;5—
and Li, = k2
b — &
[Ifaxz+bX+C'=0ra1+az=* (’1‘ 81‘1(.‘10(1(12— a]

The above relations indicates that both [ and L are positive. Ifl =lthenl =

}\’2
=
Now £, and l,are both interchangeable. The pendulum will have the same
kZ
time period whether suspended at a distance of l or s from G. We will get two

such points on either side of G-

2
Lot us draw two circles of radii e and — with G as centre. Through G draw

I
a vertical line which intersects these circles at four points S, S,0,0" such that
SG=GO'= 1 and GS'= GO=k*/l. Therefore SO=8'0'=1+ k% I. Hence there are
' four points collinear with the centre of gravity about which the period of
oscillation is the same.

Now i

I
)
“
-
s

k>l
Pi= Zﬂ\j -
g




Differentiat [

ol
HAB T (H._g_H)

dar v g l )
For T to be maximum or minimum,
.
i
This is possible when k* = I*
or R
GESEL, - 9 A
Now a2 is positive, therefore it is a mimma.
r, = o2
min n g

Whenl=0o0tl=mo, T'=x.
But [ + e, .. [ = 0 is the only condition for maximum time period.
And 70 —

This means that the axis of suspension should pass through G, i.e. G should
be the point of suspension. Now the pendulum will be in the state of netural

equilibrium. There is no restoring action due to gravity on it.

-_— —

Q.8. A simple pendulum of length | is suspended from the ceiling
which is sliding without friction on an inclined plane of
inclination 8. What will be the time period of the pendulum?

Ans. Since the point of suspension of the simple pendulum has an acceleration of a
= g sinB, down the plane. We can resolve g into two components g sin6 along the
while g cos6 perpendicular to the plane.



(perpéndicular to plane)

]
e
]

l
|
|

1
Note : If 6 = 0°, T'= 21 V!—é: which is quiet obvious.

Q.9 (a) A simple pendulum consists of a small sphere of mass m suspended by a
thread of length 1. The sphere carries a positive charge 8. The pendulum is
placed in a uniform electric field of strength E directed vertically upwards. With
what period will pendulum oscillate if the electrostatic force acting on the
sphere is less than the gravitational force? (b) Discuss the representation of
simple harmonic motion by a complex exponential.

Ans. (a) Here, two forces are acting on the bob of pendulum shown in figure and gess is given by

: w— F
will be Tp
FO = qE
Oras A (if

)
I




(b)

Ans. The displacement in simple harmonic motion can be represented by a
rotating vector.

Imag.
axis

O Real a2xs

[.ot A complex No. Z = x + iy be represented by a point R in the complex

plane. This number Z can also be represented by the vector (STR directed from
origin O to R. Let the plane polar coordinater of vector JR be (4, 8), where A is

¥
the magnitude of the vector OR and 6 is the angle it makes with the rea: axis.
Now since,

x = AcosO
y = Asinb
we have z = x+iy=A(cos 0 +1isinb)
= Ae®

where 8 = ot + ¢ and A i1s a constant.

The term A ¢* signifies a vector of constant magnitude A rotating at an
angular frequency o. Either the real or imaginary part represents a quantity
varying harmonically with time.

‘The solution of the equation can be expressed as a combination of sin wt
and cos wt by :

z = A®ew) = A cos (ot + $) + sin (0 + ¢)

The significant property of the exponential function is that the function
itself reappears after every operation of differentiation or integration. if we use
the exponential function z and adopt the convention to use only the real part of
the function to check physical measurements, the real parts of z, 2° and 2™
represent the displacement vy, velocity y' and acceleration " of the motion.



@7’

Imag. axis

1
/2

otrd

/ e
gi— ;

Rotating vector representation of displacement, velocity and acceleration

Z = iwz=wz gin/2

sz .

and 27 = —wimwizin

the velocity leads the displacement by 271 and acceleration leads the

displacement by = . Thus, differentiation involves counter-clockwise rotation of
it
the vector by 5 and multiplication by w.

Q.10. explain the torsion pendulum in detail.

Ans. A device consisting of a disk of large moment of inertia mounted on one end of a
torsionally flexible elastic rod and other end is held fixed. When this disk is twisted and
unconfined it will undergo simple harmonic motion provided the torque in the rod that is
proportional to the angle of twist. This whole arrangement is called as torsion pendulum.

The bob in this case is a heavy
7y eylinderical disc instead of a sphe ;
suspending material is a wire Whlch 1s suspended from a rigid suppI;rtue o

PRRRRRRES 3

——Shaft or wire

}' Disc or cylinder
Ui

R F S




The disc is twisted on the side and released. Now it will execute torsional to and fro
motion about the shaft which fixed with the disc as its axis.

If the disc is turned through an angle 6, the shaft is also twisted through the same angle 6. A
restoring torsional couple = -16 comes into play, which tends to bring the pendulum back to
its original position. Here t is the torsional couple per unit twist. If | is the moment of
inertia of the disc about the shaft as the axis

a0
;2 »\ts angular acceleration, the

and i )
coupie due to the aceeleration is given by

d°s

ar In the dynamic equilibrium, both these couples must balance, giving

d°0
I = — e
dt” i
or g:? =7 4 9
dt* I

Thus the disc executes SHIM and its time period is given by

z
Ve

From mechanics of materials, 7, in ease of

T = 2n

shaft is given by
and’
32!

Ve z?'h.ere. d is the diameter of the shaft, [ its length and h is the modulus of
rigidity of its material. In the case of a wire of radias 7, length I and modul :
_rigidity ), we have B ’ modulus of

mr’
21

Q.11. explain the concept of an object floating in a liquid.

Ans The upward force exerted by a fluid that opposes the downward force due to the weight of
an immersed object. If the density of an object in the fluid is greater than the density of the fluid,
the object will sink. If the density is less than that of the fluid, the object will float upward due to
the buoyancy of the fluid.



An object of lower density will float to the top and only be submerged by an amount according
to the ratio of the densities.

Whenever an object floating in a liquid is displaced vertically, say, by pressing it down and
then released, it exhibits an up-down motion which is simple harmonic in nature.
Consider a pole of cross-sectional area A and mass M floating in a vertical position in a
liquid of density p. This is the static equilibrium state because the weight of the pole is
balanced by the weight of the liquid it displaces. If we displace the pole by a distance y (by

dipping it further in the liquid), the buoyant force on the pole increase by pAgy because pAy,
is the mass of the liquid displaced

)
4§
i~ ,/?
~ ':f
LA = =
V —\ f'J o~
~ ~
£ ~
o ~
["" ~
f_/ s
~
r\’
o~
Stctnc/ ’,:- Disptaced
equilibrium ,vr‘/ state

by this further dipping; g being the acceleration due to gravity. We have neglected viscous
effects. The restoring force F on the pole is given by

F = —pAgy=-Ky

where K = pAg is the force constant. The angular frequency of the resulting
armonic oscillations is given by

and period




Q.12. Discuss Inductor-capacitor electrical circuit as S.H.M.
Ans. The inductor and capacitor circuit system also exhibit simple harmonic motion. This

circuit is also known an oscillatory tank circuit or simply oscillatory circuit in electrical
systems.

: Key
h A

g L C_..i' q
di == cell
Lat = C l

[

==

The oscillatory circuit

The equilibrium state of this circuit is the state when the capacitor is uncharged and no
current is flowing in the circuit. This state is disturbed by pressing the key which
allows the current to pass through a capacitor, thus charging the capacitor. Let q be the
charge on the capacitor so that V = qIC is the voltage across the capacitor plates, When
the key is released, the capacitor starts discharging through the inductor, i.e. the charge
changes with time and a current i = dq/dt established in the inductor.

In this circuit, the restoring force is due to the force of repulsion between electrons. This
force tries to distribute electrons equally on the capacitor plates, Inductance, on the other
hand, tends to oppose this redistribution, i.e. it opposes the increase of current. At any
instant of time, the voltage across the inductor is given by
NS e dig
Yot iy

The minus sign indicates that the voltages opposes the increase of current.
From Kirchhoff's law this voltage must equal the voltage g/ C across the capacitor
plates, giving,

pdides g S
dt> G
dzq = s
or e s 4
with D= 1

JLC



Thus, inan electr}cal circuit consisting of an inductance L and a capacitance
C, the charge oscillates harmonically with an angular frequency o = 1/ JLC
and period 7'= 2x./T,C . At any instant of time, the charge g is given by |
g = g,cos (ot +¢) "

where g, is the maximum value of the charge and ¢ is the phase of electron
osicllations. The current in the circuit is given by

; dq :
=T = —ng, SIn (ot + §)
or i = —i,sin (ot + [0))
where i, = ©g,, 18 th~ maximum value of the current. If V. is the applied
voltage, L

_ &
Uik T Vo\[_f:

since g, = CV,and o = YW re
Let us assume that initially vae capacitor C carries a charge g and the current
in inductor L is zero. At thie instant, the electrostatic enexrgy stored in the

capacitor is

?Qrdmtjtgﬁ ;r;;hii;:(ittjgtance i; zero since i = 0 initially. As time passes, the capacitor starts to discharge
nce and a current i = dqg/dt is established in the i
o uct e inductor. As ( decreases, Ee
bu(i:Irdeiise-su an\t/jw: increases, so t_hat the energy now appears around inductance as the current is
g up. en the capacitor is completely discharged, the magnetic energy

1
Em = > L2

associated with inductance is maximum because the current is maximum

d
and E = 0 since g = 0. Thus, although at this time g = 0, eq_ is not



zero, it is, in fact, maximum. The large current flow due to inductor starts transporting
charge to the capacitor plates and the capacitor is charged again. The capacitor starts
discharging again and the current now flows in the opposite direction. Eventually, the
current returns to its initial value and the process continue. The energy exchange
occurs between the electric field of the capacitance and the magnetic field of the
inductance. The total energy of the system is conserved since the system considered here
does not contain any resistive component so that there is no dissipation of energy. Thus

I = Ee+Em,
2
= 1 Q_+1Li2=constant
9GS2

: . dE _ o dq ) ,
Differentiating and setting .= =0, yields (usmg a0

di= ¢

Q.13. derive the differential equation for damped harmonic motion Derive its
possible solutions. Derive expressions for Relaxation time Logarithmic
decrement and quality factor.

dq g

4

Ans. Damping is the decrease in the amplitude or energy due to any kind of dissipation
process of an oscillating body and the oscillations are known as damped. A resistive or
viscous element is normally the cause of damping in oscillation. When the damping
force, or frictional force, is too small to change the amplitude significantly, to the
undamped motion of the body, the system is called damped harmonic oscillator. In such a
case the damping force is proportional to the velocity of the vibrating body.

o

amped harmonic motion.
) amped harmon
a spring force constant, .

The mass-spring

- & < S a C m p - OO, 3
. .

oscillates under

Elastic force
K KX ——

mi/, E e
E | e
NS

> X




Let us displace the mass from its equilibrium position and then release jt
The mass will move under the effect of following forces—

() a restoring force - kx, where k is the re
displacement. It acts in the opposite direction t

(%) a damping force ~pdx/dt, where

storing force constant, x is the
o the displacement and

D 18 the coefficient of the damping o1

d’x _
If —C}f?-is the instantaneous acceleration of the mass, then according to

Newton's Z2nd law,

d>x dx :
| m *d-t:_, = —fx— pdt | ()
The above relation 1s valid for small displacements and for sm all veloeities.
Relation (i) can be written as
: .-(@1)
B - S (
de> . dt
; fl_z_’_c 3 pdx +Zx =0 ‘
9 dtZ mdt m
ok
Putting T
k 0
S S , we have
And m 2



2 yis the damping force per unit mass at an mstant when the vibrating body
is moving with unit velocity. The constant o, represents the angular frequency
in the absence of damping and is called the natural frequency of the oscillator.
Relation (i) can be reduced to ? ;

(DF+ 2y D+m§)x’ = Qor D*+2yD + g =0
where D is the differentia operator [EEJ

Solving the above quadratic, we get

D = & -0}

Pl 2o

dx

-(—i-t— = X .-"'("Li)
- de iee 2
an T Bx S 019))

Integrating Relation (i77), we have x = C,e*

Integrating Relation (iv), we have x= Czéi"

The general Solution will be a linear combination of both the above solutions
x = Cet+Cpe

“Guesel[og (7= )| rooml (oo P ed) ]

or ¥F e [Cl exp( \/72 mear )t +Cy exp(_\ﬁﬁ _-wg)t]

The initial conditions will determine the constants C, and C, There can be
three different options to its solutions—

1. Over-damped motion (or dead beat)

2. Critically damped motion

3. Under damped motion.

Over-damped motion, y > o, Here the damping term y dominates the
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The oscillation is not simple harmonic as ‘amplitude' A e “is not constant
- decreases exponentially with time. The motion is not even periodic as it

ver repeats itself. The angular frequency of oscillation w = m% —v? isless

m the natural. angular frequency of undamped oscillations.

Relaxation Time. The decay can be characterized by the time constant I,
. called the damping time or relaxation time. It is defined as the time required
rgy todrop toe’ = 0.368 of its initial value E_. Thus when ¢ =1, then

B o o0
= = e or2yI =1
1
and r = 2y

is also called energy decay time and comparing it with amplitud time
_we get relation between the two, as Li=/2.

ogarithmic Decrement A,=¥T = pT/2 m, is the logarithmic
erement). This is the measure of the rate of amplitude decay.

We have, ; x = A,eTsin (ot + )

sin (0t +38) = sin (of + m/2)
= cos ol
x = A e cosot

bsothatatt=0,x=A, Let A A, A, .. be the amplitudes at time ¢ = T, 27,
__where T'is the period of oscillation. Then

A, = AT
AL~ Aoe'—’ﬂ‘
AS - .. Ao e—~3yT

e

A ) _ e A\
> a4 = "10ge (Al O 10ge ,Ag = 1Oge A | T A
e logarithmic decrement is the lograithm of the ratio of two amplitudes of
n which are separated by one period. :
ality Factor (Q)- Thisisa dimensionless parameter and measures the
cay of energy. It also characterizes the degree of damping of an oscillator.

stor is defined as



where ¢ = \/01(2, — v isthe angular frequency of the damped oscillation.

The decay of energy depends on the average energy stored and the average
rate of loss of energy.
d
E;<E(t)> = <P(t>>=2‘y<E(t)>
If we consider the energy dissipated in time period 7, where, 7, is given by:
2x
=

Then,

27 27
2y T, <E(@) = —?-27<E’(t)>=v€§<E(t)>

2
=5 (Average energy stored)

Q@

A _ Average energy stored in one period
; Average energy dissipated in one period

Il

ihaarc A lvalab s o : - Mt TTmomagsaA v 2 QLIRS PEeriod

Thus the quality factor of a damped harmonic oscillator may be defined as
2% times the ratio beticeen arerage energy stored and average energy lost per
period. But we are concerned with the situation in which y ==, and thus as a
very close approximation, we can write o =0, we get

Dg
& = 2y

Which is a constant for a damped system.
Now @is a dimensiconless bure number and is greater than unity. The value

of damping is mversely pProportional to the value of Q.

As Y>>0, @ — .
T = A el sin(wz + §)
The average energy of the oscillator is expressed as
<KEx)> = E et«o20

Yy related to number of oscillations over which the energy

Thus Q is closel
falls to (i/e) of its original value E . This happens in time ¢ — I, where 7is given

by
f)o r
Q

For an undamped oscillator I js

= lor )= o I
infinite and Q-factor is infinite.



Q@ T
e ©y 27 @
where T'is the period of oscillator. During the time I', the number of complete
pscillations is given as

v = F = "Q—
27 2n

Q 14. Define degrees of freedom and normal coordinates. Explain by giving examples.

Ans. Degrees of freedom in a system is the number of independent coordinates required
to completely explain the system. If we consider a system of n. values of X1, X2,....Xn then
there will be n degree of freedom in the system.

n
o N2 2
At the same time the system of sun Z‘\xi. ~%)” of n numbers will have (n—
S L.—_l

) degrees of freedom. This is due to fact that x is known and only (n 1) values
an be assigned to the system. ;

Normal Co-ordinates: The normal coordinates of a coupled system are those parameters in
terms of which three equations of motion of the system can be written as a set of linear
differential equations along with constant coefficients. Normally these are used in a coupled
system.The simple harmonic motion associated with each normal coordinate is called
normal mode of the coupled system. Each normal mode has its own characteristic
frequency called the normal mode frequency. Suppose we have two simple pendulums
coupled by a spring attached to the bobs as shown below. These will be "In phase"
mode or "Out of phase”™ mode. In our example, there are two normal modes, one
associated with normal ordinate X and the other with Y

In Phase Mode.

Ya
‘ub e ‘Ua

X = S StEaas the normal co-ordinate



“Out of Phase” Mode :

2]

~Yg --w. o Y o Ve

X ¥, — P, is the normal co-ordiante

Q 16. Two equal masses M are connected with three springs of same.
spring constant. Calculate frequencies of oscillation in longitudinal

If

mode.

M

Ans. The Figure shaws the equilibrium state of the sybtem We assume
that the springs are massless. Let the length of ¢cach spring be @

Figure (b) depicts the general configuration of the o&cﬂlatulg system.

Let W and W, be the displacements of the masses A and B at any instant of
time. Assummg that at this instant ¥, >¥_ the equation of motion for a general

configuration are
BY, + k(¥ 1)

RY,  B(¥~F)

T

m¥a

e V7 ! @

®)

(@) Equilibrium state, and
(b) General configuration
Longitudinal oscillation




LT

™

448

boloumeey

]

o

h

(i = Bt




These are the angular frequencies of the two normal mode. The shape o
configuration of mode 1 with frequency o, is obtained from either Eq. (iit) or E
(fv) by setting o® = R/m.

o .
\Wa /model - S

.(_‘*L@_) e ‘ a0
¥a /mode2 . =

(8)
e
1 W v W
K :n . L k
3 = 4 yo B R
|
“Va‘ l'_';

~Wa

(a) Mode with lower frequency
(b) Mode with higher frequency
Normal modes of longitudinal escillations

The diagram (a) above represents (V) and (b) rep:éesent‘s (vi) Hence prove i

a A A



UNIT-7
NON-INERTIAL SYSTEMS

Q 1. What is frame of reference? Define Non inertial, fictitious force and inertial
frame of reference.

Ans. Frame of reference (or reference frame) is defined as the set of
abstract coordinate system used to specify the position, motion and others standardize
measurements of any object in space.

1. Non-Inertial Frame of reference: The frame of reference that is undergoing
acceleration with respect to an inertial frame. If there is an accelerometer at rest in
a non-inertial frame then it will be generally detect non-zero acceleration.
Therefore an accelerating frame of reference with respect to an inertial
frame of reference is non-inertial.

Consider that a frame of reference S' is accelerating with an acceleration ao
with respect to the inertial frame S. If no force acts on a particle P, it has zero
acceleration as observed by an observer in frame S but the observer in S'
will find that the acceleration of P relative to it is -ao.

It means that the observer in frame S' will observe that a force Fo = -mao acts
on the particle P. But actually no external force is acting on P. Such a force
which does not really act on a particle but appears to act due to the acceleration
of the frame is called a fictitious force.

Fo = -mao

Where m is the mass of the particle P
Suppose an external force Fi acts on the particle P. It will experience
acceleration, let this be ai. in the inertial frame.

Fi=m ai.
The apparent force F acting on the particle is observed in the non-inertial
reference frame S'.
F = Fi+ Fo = mai + (-rnao)
Therefore fictitious force is that quantity which must be added to the real
force acting on the particle in the inertial frame to give the value of apparent

force in the non-inertial frame of reference.
When mai=0

SO F=Fo=-m ao

Here Fo is called the fictitious force.


https://en.wikipedia.org/wiki/Coordinate_system

2. Inertial Frame of reference: An inertial frame of reference may be defined also
be called Galilean reference frame, non accelerating frame. All inertial frames are in
a state of constant, rectilinear motion with respect to one another; an accelerometer
moving with any of them would detect zero acceleration.

Q.2 Discuss freely falling elevator in the context of non-inertial frame
of reference.

Ans. lets assume that that an elevator is falling freely under the action of gravity. It
is a non-inertial frame of reference. If earth is the inertial frame of reference,

then a = o

Here % is measured upwards from the surface of the earth and g is the
acceleration due to gravity.
The fictitious force F on a mass m in the falling elevator is given by

F,\ = —ma,=mgz

0

the total apparent force F = E +F.

E.= —mgx
EL= E R
1
= —mgxtmgz =0 l

It means if the body in the elevator is not accelerated with respect to the falling
elevator i.e. non-inertial frame, in that case Fi = 0. It shows that the apparent
weight of a body in the non-inertial frame of a freely falling elevator is zero. It also
means weightlessness.

If a body is in the space of the elevator and has zero velocity with respect to the
elevator it will remain suspended in space in the elevator when the elevator is
falling freely under the action of gravity.

Special case: If the elevator is moving downward with the acceleration ao, where ao<
g v
RS el
F = —mgg+tmaz
If the body is on the surface of the elevator, its apparent weight,
R = -F=m(g-a)
If the elevator is moving up, the apparent weight
R = m(gta)



Q 3. Discuss the working and application of focault's pendulum.

Ans.

It is just a simple pendulum with a heavy bob of 28kg and having a suspension wire
of about 70 meter length. The time period of the pendulum works out to
approximately 17 sec.

Let us consider that the pendulum is kept above the place P and observed. For
simplicity centrifugal force is neglected, only Coriolis acceleration is taken into
account. The horizontal component of the Coriolis acceleration tries to change its
plane of oscillation. As shown in figure if the bob is left at A, due to horizontal
component of the Coriolis acceleration would not reach at B but it will reach B' and
will come back to A. In this way the plane of oscillation goes on changing. The
plane of oscillation rotates clockwise in the Northern hemisphere implying
that the earth rotates anticlockwise to an observer in the Northern
hemisphere i.e., the earth rotates from west to east, If the experiment is
performed in the southern hemisphere the plane of pendulum rotates in the
anti-clockwise direction to an observer. In the Southern hemisphere, to the
observer, the earth appears to rotate in the clockwise direction i.e, from west to east.
This experiment proves' that the earth rotates from west to east.

If w is the angular velocity of the rotation of the earth then the plane of oscillation
rotates with an angular velocity wsin® above the vertical axis passing through the
mean position of the pendulum. If r is the radius of the circle then the time period

2nr ;
~— here v=ro sin ¢.
(\
2%r: . . 2%

R —— = :
rosing  @smno

for the complete rotation of the plane of oscillation is given by



At the poles ¢ = 90°and,

2r
—— = 24 hours
a) .
.. At the poles T = 24 hours
Therefore in general,
= 24}}0%, Here T > 24 hours
sin ¢
At the equator $ =0
27
— = 00
i wsin(

and the time period of the plane of oscillation becomes infinite.

£ 4 A

Q.4. Explain fictitious forces like centrifugal force and Coriolis force in the context
of uniformly rotating frame of reference.

—— o ———

Ans. A frame rotating with an angular velocity with respect to an inertial
frame of reference is a non-inertial frame.

Y

v




Consider two frames of reference S (X, Y, Z) and S’ (XY, Z7. They have
common origin and S'is rotating with an angular velocity w about the axis Y’
relative to S. Here Sis inertial frame of reference and S’is non-inertial frame of
reference. ;

The observer O in frame S observes that the observer O in frame S’ is
rotating with an angular velocity o. The observer O’ observes that O is rotating
with an angular velocity — . Consider a particle P in space.

Position vector r of Pin reference frame S is given by

re— axtivthkz -.-(®)
The position vector r’ of Pin reference frame 5" is given by
re = Lyt R ---(2)
As both the systems have the same origin O,
re =
r = x'+iy't+k'z ...(zn)

Accordlng to observer 0, the frame of references S”is not rotating and its
unit vectors remains constant, therefore differentiating equation (i)

_(_i_r_'. = 'Idx'+‘l dyl+kld2'

de % ael dt

Vg dy g
P ey dar =G

V'is the velocity of P measured by O’relatlve toits own :Erame of reference S’
(x', ¥, 2)

According to observer O, the frame S’ is rotating and its unit vectors are’
also changing in direction. Therefore differentiating equation (772} with respect
to time

ar=y .. AT Ny dz' di' dj’ dk'

—— =i —+ SR et S

dt T de a7 de dt &

The end points of unit vectors ¢, j, 2’ are in uniform circular motion with
angular velocity o relative to observer O,

gé: o > 7"
dt =S i
aj' s
e — s X 7!
at U ¥
dk’ o
2l T ;

dt S

Substituting these values in equation (v)

are l: ,dx" i Ay 042
dt dt dt dt



twxi)x'+ wxj)y'+ X k2]
or V = V+wxXxr -.(vr)
Here V is the velocity of P as observed by O and V' is the velo-city of P as
observed by O’
Acceleration

The acceleration of P as measured by O relative to reference frame S’ is
given by

Vs O A
Tl o)
The acceleration of P as measured by O’ relative to reference frame S’ is

given by

a =

GV o G0V

- T i‘ ¢ ___+>k.___z_ T
a dt J 57 o (vtr)
Differentiating equation (W) with respect to time, taking w to be constant.
av. dV'+u~x~dL e
di " idt’ dt s
Also from equation (7v) :
R Ve £ RV o o)
TR e s e o ey e SN 2
Differentiating with respect to time.
7 ' ; AV T
dl * o de "r'J' J + p! d"z
dt dt dt dt
di' dy' dk'
iF V1_+Vn—+"r'-‘
[ T A S T ]
iv_' —_ 1 + x»'\"v : .
T hastw ...(a1)
F dr e
Also T V=V'+wxr ...(xit)

Substituting these values in equation (ix)



The total force acting on a particle of mass m as observed in rotating frame
of reference S'is given by
F' = ma’ = ma-~2mw X V' —mup X @ <7)
F F —2mw X V' —mw X (w X r) ...{xv)

Special Cases.

(1) When the particle is at rest with respect to rotating, frame of reference,
=0

4 F' = F—mwX WXr) xvr)

The centrifugal force is —mw X (w X r). It is a fictitious forece acting on a
particle at rest in a rotating frame of refeence. The effect of centrifugal force 1s

to reduce the value of g on the surface of the earth because the earth rotates
about its own axis.

The centrifugal for is a fictitious force which acts on a particle at rest relative to a
rotating frame of reference. Being responsible for keeping the particle at rest in the
rotating frame, it is numerically equal to the centripetal force, mw?r, where r is the
distance of the particle from the centre of rotation but is oppositely directed, i.e.
outwards, away from the axis of rotation, Coriolis force too is a fictitious force, which
acts on a particle in motion relative to a.rotating frame of reference. It is proportional to
the angular velocity (w) of the rotating frame and to the velocity v' of the particle
relative to it. Its direction is always perpendicular to that of v' and is obtained by a
rotation through 90° in the opposite sense to that of w, and its value is -2m V'

U
(8]
/\ :
Centrifyugal
0 force e
= R
Centre of =
rotation



It will obviously be zero if either v' or w is zero, i.e., if the particle is a rest relative to
the rotating frame in which case the only fictitious force acting on the particle will
be the centrifugal force) or if the reference frame be a non-rotating one.

It will further be seen that particle P will move relative to the rotating frame S'in
accordance with Newton's law of motion if we add to the true force F, these two
fictitious forces.

Q.5. Discuss very briefly the significance of Coriolis force.
Ans. lets us assume that a body on the surface of the earth is in motion relative to the earth
then the acceleration measured by the observer is given by the equation

A TP
’

a = a—2w XV —wX@WwXr)

In this equation the term [—2w x V'lis the coriolis force. The Coriolis force
acts when a body is falling freely under the action of gravity in the vertical
d1rept10n. It deviates the true vertical path of the body. Due to this the bodies
falling freely under the action of gravity are deviated towards east.

o

The deviation is due to the horizontal component of the Coriolis force.

It has been observed that the cyclonic winds are turned towards their right in the
Northern hemisphere and towards left in the Southern hemisphere. They are
produced due to a low pressure centre combined with the Coriolis
acceleration. This has also been confirmed by the photographs taken by the
satellites from the earth's atmosphere.



