Free Study Material
from
All Lab Experlments

Al Lab\
' Ex eruments

B.Sc. (Physical Science)

Chapter - 1
Vectors and
Differential Equations

Support us by Donating
at the link “DONATIONS” given on the Main Menu

Even the smallest contribution of you
will Help us keep Running



91955
Typewriter
B.Sc. (Physical Science)



Chapter - 1

Vectors and 

Differential Equations


PHYSICS-DSC 1 A: MECHANICS
Ch-01

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with
respect to a parameter. Ordinary Differential Equations: 1st order homogeneous differential
equations. 2+ order homogeneous differential equations with constant coefficients.

In this chapter, we will study some of the basic concepts about vectors, various
operations on vectors, and their algebraic and geometric properties. These two type of
properties, when considered together give a full reahisation to the concept of vectors,
and lead to their vital applicability in various areas as mentioned above.

Q. What is a Vector? Explain position vector its direction cosine and the types of vector.
Sol.

Let /" be any straight line 1n plane or three dimensional space. This line can be given
two directions by means of arrowheads. A line with one of these directions preseribed
1s called a directed line (Fig 10.1 (1), (11)).
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Fig 10.1

Now observe that if we restrict the line / to the Iine segment AB, then a magnmitude
1s prescribed on the line 7 with one of the two directions, so that we obtain a directed
line segment (Fig 10.1(111)). Thus, a directed line segment has magnmitude as well as

direction.
Definition 1 A quantity that has magnitude as well as direction 1s called a vector.
Notice that a directed line segment 1s a vector (Fig 10.1(111)), denoted as -A—B or
simply as &, and read as ‘vector .A—B > or “vector & >.
The pomnt A from where the vector AB starts is called its initial point, and the

point B where it ends 1s called its terminal point. The distance between 1mfial and
terminal points of a vector 1s called the magnitude (or length) of the vector, denoted as

|'E |, or|a|, or a. The arrow indicates the direction of the vector.

Since the length is never negative, the notation | | < 0 has no meaning.




Paosition Vector
From Class XI, recall the three dunensional right handed rectangular coordinate
system (Fig 10.2(1)). Consider a pomnt P 1n space, having coordinates (x, y, z) with

respect to the origin O (0, 0, 0). Then, the vector OP having O and P as its imitial and
termunal points, respectively, 1s called the position vector of the point P with respect

to O_Using distance formula (from Class XT), the magnitude of . OP (or 7 )is given by

.[6ﬁ| = -|,|I'Jc2+_y2 + 2

In practice, the position vectors of points A, B, C, etc_, with respect to the origin O
are denoted by @, b, & , etc., respectively (Fig 10.2 (ii)).
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Direction Cosines

Consider the position vector OP or# ofa point P(x, y, z) as in Fig 10.3. The angles o,
B, ymade by the vector 7 with the positive directions of x, y and z-axes respectively,
are called its direction angles. The cosine values of these angles, i.e., cos o, cos} and
cos 7y are called direction cosines of the vector 7 , and usunally denoted by /, m and n,

respectively. Z
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From Fig 10.3, one may note that the triangle QAP is right angled, and in it, we
have coso = (r stands for |F |) . Similarly, from the right angled triangles OBP and
r _

OCP, we may write cos B = 2 and cos V= z. Thus, the coordinates of the point P may

¥ r
also be expressed as (/r, mr,nr). The numbers /r, mr and nr, proportional to the direction
cosines are called as direction ratios of vector 7 , and denoted as a, b and ¢, respectively.

One may note that 2 +m? + =1 but a®> + B> + & # 1, in general.

Tvpes of Vectors
Zero Vector A vector whose initial and terminal points coincide, 1s called a zero
vector (or null vector), and denoted as 0. Zero vector can not be assigned a definite
direction as it has zero magnitude. Or, alternatively otherwise, it may be regarded as

having any direction. The vectors E, BB represent the zero vector,

Unit Vector A vector whose magnitude is unity (i.e., 1 unit) is called a unit vector. The
unit vector in the direction of a given vector @ is denoted by 4 .

Coinitial Vectors Two or more vectors having the same initial point are called coinitial

vectors.

Collinear Vectors Two or more vectors are said to be collinear if they are parallel to

the same line, irrespective of their magnitudes and directions.

FEqual Vectors Two vectors 'gi and » are said to be equal, if they have the same
magnitude and direction regardless of the positions of their initial points, and written

o

as a =>b.

Negative of a Vector A vector whose magnitude is the same as that of a given vector
(say, AB ), but direction is opposite to that of it, is called negative of the given vector.

—_—

For example, vector BA is negative of the vector AB ., and written as BA=—AB.

Remark The vectors defined above are such that any of them may be subject to its
parallel displacement without changing its magnitude and direction. Such vectors are
called firee vectors. Throughout this chapter, we will be dealing with free vectors only.

Example 1 Represent graphically a displacement N

of 40 km, 30° west of south. W< 0O .g
Solution The vector ﬁ; represents the required g

displacement (Fig 10.4). ; ' 30°

10 km

| | &
Example 2 Classify the following measures as v
scalars and vectors.

(1) 5 seconds P 3
(]]) 1000 cm? Fig 10.4




(ii)) 10 Newton (iv) 30 km/hr (v) 10 g/cm’
(vi) 20 m/s towards north

Solution
(1) Time-scalar (1) Volume-scalar (i) Force-vector
(iv) Speed-scalar (v) Density-scalar (vi) Velocity-vector

Example 3 In Fig 10.5, which of the vectors are:
(1) Collinear (i) Equal (i) Coinitial

Solution
(1) Collinear VGCtOISZ.Ef, ¢ and d -

(i) Equal vectors: a and <. b

(1) Coimtial Vectors:'f_;;, ¢ and 4.

Fig 10.5

Forexample, in Fig 10.8 (11), we have shjftﬁdvechr.f;; without changing its magmiude
and direction, so that it’s initial point coincides with the terminal point of 7 - Then, the
vector @+ b , represented by the third side AC of the triangle ABC, gives us the sum
(or resultant) of the vectors z and bie. in triangle ABC (Fig 10.8 (11)), we have

AB+BC = AC
Now again, since ACL'-CA , from the above equation, we have
AB+BC+CA = AA=0

This means that when the sides of a triangle are taken 1n order, it leads to zero

resultant as the initial and terminal points get coincided (Fig 10.8(u1)).



Now, construct a vector BC' so that its magnitude 1s same as the vector BC , but
the direction opposite to that of it (Fig 10.8 (111)), 12,

BC = -BC
Then, on applying triangle law from the Fig 108 (111), we have
AC=AB+BC = AB+(-BC) =d-b
The vector AC' is said to represent the difference of .Ei and b .

Now, consider a boat in a river going from one bank of the river fo the otherin a
direction perpendicular to the flow of the river. Then, it 15 acted upon by two velocity
vectors—one 1s the velocity imparted to the boat by its engine and other one is the
velocity of the flow of river water Under the simultaneous influence of these two
velocities, the boat in actual starts travelling with a different velocity. To have a precise
1dea about the effective speed and direction B F ¢
(1.e., theresultant velocity) of the boat, we have F S ittt -
the following law of vector addition.

Tf we have two vectors d and b represented

by the two adjacent sides of a parallelogram in
magnifude and direction (Fig 10.9), then their

sum .E +b is represented in magnitude and

direction by the diagonal of the parallelogram
through their common pomnt. This 1s known as
the parallelogram law of vecior addition.

Fig 10.9

[ 5~ Note | From Fig 10.9, using the triangle law, one may note that

or OA +OB = OC (since AC=0B)

which 1s parallelogram law. Thus, we may say that the two laws of vector
addition are equivalent to each other.

Properties of vector addition

Property 1 For any two vectors |

oy
&
)

-Ef vb=b+d {Commutative property)

Hence .(§+5}+E =.E+(5+c)



Q. Explain Vector Multiplication.

Sol.

Let @ be a given vector and A a scalar. Then the product of the vector & by the scalar
A, denoted as A d , is called the multiplication of vector a by the scalar A. Note that,
A @ is also a vector, collinear to the vector @ . The vector MA@ has the direction same
(or opposite) to that of vector & according as the value of A is positive (or negative).
Also, the magnitude of vector A4 is |A| times the magnitude of the vector @, i.e.,

|ad| = |x||d|

A geometric visualisation of multiplication of a vector by a scalar is given
in Fig 10.12.

%y I

Fig 10.12

*-.2?

When A = —1, then 4G =—d, which is a vector having magnitude equal to the
magnitude of @ and direction opposite to that of the direction of @ . The vector—@ is
called the negative (or additive inverse) of vector d and we always have

Ga(ed) = (-a) +a=0

Also,if .= ﬁ : providedﬁ 0, 1.e. a isnota null vector, then
a

o IR G
I?‘ual=l?«-|[a[=ﬁ[“[

So, Ad represents the unit vector in the direction of . We write it as

~

a=-—4d

i =

For any scalar k, k0 =0.

Vector componants.

Sol.



Let us take the points A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1) on the x-axis, y-axis and
z-axis, respectively. Then, clearly Z

|0A|=1,|0B| =1 and |OC|=1

k1.C 00,1
Thevectors.ﬁ, OB andaj',eachhaving magnitude 1, .? %
are called unit vectors along the axes OX, OY and OZ, Y B (0,1,0)
respectively, and denoted by fjj and ., respectively X A (1,0,0)
(Fig 10.13). Fig 10.13

Now, consider the position vector OP ofa point P(x, y, z) as in Fig 10.14. Let P,
be the foot of the perpendicular from P on the plane XOY. We, thus, see that P, Pis

This form of any vector is called its component form. Here, x, y and z are called

as the scalar components of 7 ,and xi, 3J and z& are called the vector components

of 7 along the respective axes. Sometimes x, y and z are also termed as rectangular
components.
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parallel to z-axis. As i, ] and & are the unit vectors along the x, y and z-axes,

respectively, and by the definition of the coordinates of P, we have ﬁ —OR =k .

Similarly, @ zo_s;:ﬁ and O—Q:xf-



Therefore, it follows that .DPl = lOQ +QP, = Xi + 13;
and OP = OP, + PP =xi +1j +zk
Hence, the position vector of P with reference to O is given by

a’(or F) = .rf+;g}:+:f§

Q.Ifdandb are any two vectors given in the component form alf +a, j+ a3/l: and

'bl,’ +b2]' +b3IC' , respectively, then how to sum, subtract and multiply them?

(1) the sum {or resultant) of the vectors .E,E and b is given by
G1b = (ay+ b+ (ay +by) ]+ (ay + bE
(ii) the difference of the vector d and b is given by
G-b= (a,-b)f +(a,—b,) ] +(a,—by)F
(iii) the vectors ¢ and b are equal if and only if
a=b,a,=b, and a,=0,
(iv) the multiplication of vector ¢ by any scalar A is given by
A= (a)i (@) (apk
Sol.

Also the distributive laws can be given by
Example 4 Find the values of x, y and z so that the vectors ',.;}’ —xi+ 2}' +zk and
-5: 2i + +F are equal.
Solution Note that two vectors are equal if and only if their corresponding components

are equal. Thus, the given vectors @ and b will be equal if and only if
x=2,y=2,z=1

Let d and b be any two vectors, and & and mn be any scalars. Then
O ki +mad=k+m)a
(i) k(ma)=(km)a
@) k(@ b) ki kb



Example 5 Let d=i+2j and E =2i+j.1Is |@|=|b|? Are the vectors 'Fr and b
equal?

Solution We have |d|=+/1+2% =+/5 and b V22 1P 5

So, | @ |=|b |. But, the two vectors are not equal since their corresponding components

are distinct.
Example 6 Find unit vector in the direction of vector d=2{ +3/+k

Solution The unit vector in the direction of a vector @ 1s given by @ =——

la|
Now la| =22 £32 412 =14

—

iagnitude

'A 1 . . on 2 - 3 4 L -
= (2f+3j+k) = =i+ +—=k

Therefore a Jﬁ(? j+k) na .f14j 14

1 05 1heis 1. 2.

—ad = =(-2)=—Ffi—F]

| NG NCEN

Therefore, the vector having magnitude equal to 7 and in the direction of 7 is

éi':

a1 ey U Y
Ta=17—=i—j|=fFt——FJ
L@ ﬁj] V5
Example 8 Find the unit vector in the direction of the sum of the vectors,
G=2i+2j—5k and b=2i + j+3k .
Solution The sum of the given vectors is

a b( Esay)=4i 3] 2k

and 12| ='\/42+32+(—2)2 =29



Thus, the required umt vector is
L 1

4 ~ 3 . 2 -
i+ j — k
1] <29 NN RN

Example 9 Write the direction ratio’s of the vector G =7 + j — 2k and hence calculate

(4i +37—2k) =

its direction cosines.

Solution Note that the direction ratio’s @, b, ¢ of a vector 7 =xi + yj + zk are just
the respective components x, y and z of the vector. So, for the given vector, we have

a=1, b=1 and ¢ =-2. Further, if /, m and » are the direction cosines of the given
vector, then

g:i:L m:i:i n=-_= _ 2 as |[F|=+/6

Q. Prove that the vectors joining two points have the magnitude NG =) # O =30 + (2 - 2)
Sol.
IfP (x, ¥, 21} and P,(x,. y,. z,) are any two points, then the vector joining P, and P,
is the vector PP, (Fig 10.15). Z
3 5 : . .. T 2Py (3,72, 27)
Joining the points P, and P, with the origin )
O, and applying triangle law, from the triangle
OP,P,, we have A
: : r . TP
OP, +PP, = OP,. o Yoz
: : . A >R >
Using the properties of vector addition, the 1,40 j
above equation becomes x

PP, = OP, —OP, Fig 10.15

j..e. ?1:'2’ == (xzf + yz_} + sz) - (xlf + yl-} + Zlk)
= (- x]); +(n - J”l)} +(2y — 2k

The magnitude of vector ﬁ is given by

PP, = \j(xz - x1)2 +(¥y - 3’1)2 +(zy — 21)2



Example 10 Find the vector joining the points P(2, 3, 0) and Q(— 1, — 2, — 4) directed
from P to Q.

Solution Since the vector is to be directed from P to Q, clearly P is the initial point
and Q is the terminal point. So, the required vector joining P and Q is the vector ﬁj "
given by

PO = (1-2)7 +(2-3)j+(4-0)

ie. PQ = -3i -5/ —4k.

Example 11 Consider two points P and Q with position vectors OP =34 —2b and
CTQ: @ b .Findthe position vector of a point R which divides the line joining P and Q
in the ratio 2:1, (1) internally, and (11) externally.

Solution
(i) The position vector of the point R dividing the join of P and Q internally in the
ratio 2:1 1s
. 2@+b)+@Ba-2b) sa
Orf 2+1 3
(i) The position vector of the point R dividing the join of P and Q externally in the
ratio 2:1 1s
. d+b)—(3G—2b =
OF = 2(a+b)—(a 23))245_5

2-1

Example 12 Show that the points A(Zf } iE), B(f 3}' 5£), C(Sf 47 4}';) are
the vertices of a right angled triangle.

Solution We have
AB = 1-2F +(3+1)j+(5-DF 7 2} 6F
BC= (-1 +(-4+3)j+(-4+5F =27 — j+&
and CA=(2-3)+( 1+ +1+F =—F+3]+5k

Further, note that
|AB* = 41=6+35<BC +|CA[
Hence, the triangle is a right angled triangle.



Q. Write a Shortnote on Scalar Product.

Sol.

1. Scaler or Dot Product:

The scalar product of two nonzero vectors .Er' and b , denoted by E .b,is

defined as a-b=|ad||b|cos8, A
where, 0 1s the angle between a and E_:;, 0 (Fig 10.19). 0 N
_ -
If either @=0 or b =0. then 0 is not defined, and in this case, ) 4
Fig 10.19

Observations

1. &-4h 1s areal number.

2. Let & and b be two nonzero vectors, then a - b =0 if and only if Gand b are

perpendicular to each other. i.e.
G-b=0c alb
3. If@=0,then d-b=|d||b|
Inpartimﬂar,.a.a:[a[g, as 0 in this case is 0.
4. 1f0=m then 7.5 =|a||B|

In particular, G (@ |al*.as®6 in this case is .

5. In view of the Observations 2 and 3, for mutually perpendicular unit vectors

i, j and %, we have

4]

._,
Sn
Sy

Il
=T
=

[l
—

batt
s
I
Sy
&
I
=
bt}
o]



aji +a,j+ask

Q. What is the Scalar product of a= and b =bi +byj+byk.
ib=

= (a‘li’ +G2_,T+a3.r'») (blz +sz +b3k}

= alz (blr+sz+b3k}+azj (bi +sz+b3k} +a3ﬁ, (bi +b2j+b3k)

= albl(f'f)‘Fﬂlbz(f'f)"‘ﬂlbz(f'k)+azbl(f'f)+ﬂzbz(f'f)+ﬂzb3(f'k)
+ ashy(k -7)+ asb, (k- J) + ayby (- F) (Using the above Properties 1 and 2)

= ab +ab, +apb, (Using Observation 5)

Thus b= ab, +a,b, +a,b,
Sol.

Q. What s a Projection of a vector on a line? Explain with example.

Sol.

Suppose a vector AB makes an angle 6 with a given directed line / (say), in the
anticlockwise direction (Fig 10.20). Then the projection of AB on/is a vector P
(say) with magnitude | AB | cos O, and the direction of P being the same (or opposite)

to that of the line /, depending upon whether cos O is positive or negative. The vector P
of AB along the line /s vector AC.

B
—.B |\-—
7 : :i\
g6 ! : &
+ i - -~ .
A T € c 7 A
(0°< 8 < 90% (90°< B< 180"
(D (ii)
—5 e 0 =
C. £ ” I N\ r C {
- ";; o !
B B
(180"< 8 < 270" (270"< 8 < 360°%
(iif) Fig 10.20 )



Observations

1. If P isthe unit vector along a line /, then the projection of a vector 7 on the line
I is given by a -

2. Projection of a vector @ on other vector .5 , 1s given by

G-b, or a- bT , oI L{E-E)
5]

3. If 6=0, then the projection vector of AB willbe AB itselfand if 6= T, then the

projection vector of AB willbe BA.

T 3n —
4. If0=—or© :? , then the projection vector of AB will be zero vector.

Remark If a, B and vy are the direction angles of vector @ = alf + azj + agfg , then 1ts

direction cosines may be given as

~
—

a i a a a
—L cos —2. and cos 73

allz] 1@l al |a

COSs

~ Also, note that '| d|cosa, |a|cosP and |a|cosy arerespectively the projections of
a along OX, OY and OZ. i.e., the scalar components a,, a, and a, of the vector 4,
are precisely the projections of @ along x-axis, y-axis and z-axis, respectively. Further,
if @ is a unit vector, then it may be expressed in terms of its direction cosines as

d =cosai +cospj + cosvé

Example 13 Find the angle between two vectors @ and b with magnitudes 1 and 2

respectively and when a-0=1,

Solution Given & b 1,|@| land|b| 2.We have

1
2 5



Example 14 Find angle ‘0" between the vectors @ :f+j:—kn and b=i — } k.

Solution The angle © between two vectors ¢ and b is given by

a-b
cosO = ——=
T as)
Now ib=@G+]-k)-(i-j+k=1-1-1=-1.
-1
Therefore, we have cosO = 3
hence the required angle is 0= cos 3

Example 15 If.azﬁf—j—Sé and b=i+3]—5k, then show that the vectors
d+b and d—b are perpendicular.

Solution We know that two nonzero vectors are perpendicular if their scalar product
18 zero.

Here  d+b = (59— j—30)+(i+3]—5F) =6 +2]—8F

and G—b = (5T—j—3k)—(i+3j-5F)=4i —4j+2F

So (@+D)-(@—b) = (6] +2] <8Kk) (4 —4] +2k) =24-8-16=0.
Hence -E;f' +b and a—b are perpendicular vectors.

Example 16 Find the projection of the vector 4= Zf+3}+2,i:* on the vector

b=i+2j+k.

Solution The projection of vector & on the vector b is given by
| _ (2x1+3x2+42x1) 10 5
1 g5 - 222D I
5] JO? +@P+@? V6 3

Example 17 Find |Ei—5 |, if two vectors 'Ej and b are such that |@| 2, Igl 3

and G.-b=4.
Solution We have

e )

2
P}
T ra
I
~—
—

i—b)
—b-d+b-b

2y
&)

a—

I
Tl

|aP-2(-b)+|b P
= (2)" -2 +(3)°
Therefore | a —b =45



Example 18 If 7 is a unit vector and (¥ —a)- (¥ +a) =8, then find | ¥]|.

Solution Since 7 is a unit vector, |d|=1. Also,
(Xx—a)-(x+a) =8
or PX+X¥-d—d-¥-d-d =8

or | % 1=8 ie |¥P=09

Therefore |%| =3 (as magnitude of a vector is non negative).
Example 19 For any two vectors & and b , we always have | a b|<|dl|lb]| (Cauchy-
Schwartz inequality).

Solution The inequality holds trivially when either =0 or b =0.Actually, insucha

situation we have |§-5[:0:|§|[5[. So, let us assume that |a’|¢0¢|5| )
Then, we have

@b
1|15 = |cosB|=1
Therefore |a-b|< |al|b]
Example 20 For any two vectors .E.c and b, we always = C
have.|Ej+5|£|E[+|5|(triangleinequality). g . '
Solution The inequality holds trivially in case either - F- B
E:ﬁorf_}:a (How?). So,let-lﬁ[ 0 [5[.Then,
la+bP = (@+b) =(a+b)-(@+h) Fig 10.21
—G-a+a-b+b-a+h-b
. | [> +2a b+ | b 2 (scalar product is commutative)
< |aP +2)a-b|+|b P (since x < x| Ve R)
< |@+21@||b|+1b (roii Btaniale 19)
= (al 18]’
Hence \a bl<|al |b)

Remarl If the equality holds in triangle inequality (in the above Example 20), i.e.
|a+b| = |a|+|b],

then |AC| = |AB|+|BC|

showing that the points A, B and C are collinear.



Example 21 Show that the points A (-2 +37+5k), B(i + 2 +3k) and C(7i —k)
are collinear.

Solution We have
AB=0 2 2 3] @ 5F 3 | 2%,
BC=( Di (0 2} (1 3k & 2] 4k,
AC=(7 i © 3] (1 5 9 3] 6k
|AB| =14, |BC| 214 and |AC| 3J14

Therefore |A—C| =l|E|+fﬁf[

Hence the pomts A, B and C are collinear.

In Example 21, one may note that although AB + BC + CA =0 but the
points A, B and C do not form the vertices of a triangle.

Q. What will be the  vector product of two nonzero vectors a and b
Sol.

The vector product of two nonzero vectors @ and b . is denoted by a b

and defined as :
Gxb =|d||b|sin@a,
| _ | A
where, 0 is the angle between Gandd, 0<6<m and 7 is

a unit vector perpendicular to both & and b , such that

'Ei,.}i: and 77 form a right handed system (Fig 10.23). i.e., the _A

right handed system rotated from 7 top moves in the

Fig 10.23

direction of 7.
Ifeither 7=0 orb =0 , then 0 is not defined and in this case, we define @x5 =0.
Observations

1. axb is a vector.

2. Let Gandb be two nonzero vectors. Then 'Ef xb =0 if and only if 'Ei and b
are parallel (or collinear) to each other, i.e.,

ixb =0 alh



In particular, axa = 0 and ax (—a)= 0 , since in the first situation, 6 = 0

and in the second one, 6 = 7, making the value of sin 6 to be 0.

3. If o=Z thend b |alb].

k
4. Inview ofthe Observations 2 and 3, for mutually perpendicular \
unit vectors 7, } and & (Fig 10.24), we have A
A
| | ! \>_/J

xj=kxk=0

L

ixi =

-~ -~

ixj=Fk jxk=i, kxi=] Fig 10.24

=

5. Interms of vector product, the angle between two vectors @ and b may be
given as

el

Y|

x

|

|
I

sin 0=

=
=y

Q. Prove that If & and b represent the adjacent sides of a triangle then its area is given as

1w =
—|la b|.
2

Sol.
By definition of the area of a triangle, we have from 7,
Fig 10.26,

1
Area of triangle ABC = EAB -CD.

Fig 10.26

But AB=|b| (as given), and CD = |a|sin®.

BT
Thus, Area of triangle ABC = Elbllalsme =E|0Xb|-

dandb be two vectors given in component form as i +a,] +a l\:.and
Q. Prove that if g P i+ +a;

byi +b, ] + bsk , respectively. Then their cross product may be given by
i j ok
axb =4 @ &

b by b



Explanation We have
Gxb = (af +a,] +ak)x (b +b,J +bsk)

= ayby (7 % E)+ by (7 x )+ ayby (T x k) + ayby (7 x1)
+ aby (% )+ ayby (< )
+ ab(kxi)+ashy(kx J)+ab,(k x )

= agby( % )~ by (k x1) — apy ( % )
+ ab,(jx k) +ab (kxi)—ah,(x k)

(by Property 1)

.(as fxf:}x}:kAXkA:O and fxfgz—igxf,}'xf:—ij" and knx}:—}'xﬁg)
= .albz,fg — albﬁ — azblkn + azbaf + a3blj — a3bzf
.(as ij::.f:', }xkA:f and fgxf:}')
= (aybs —asby)i —(@b; —ashy)j + (b, — ardy)k

~

i ] k
= flrl aj ﬂ3
bl bz 53

Example 22 Find |dxb |, if &’:2:"\+}+3kh and §:3f+5j—2£;

Solution We have

i ok
dxh=12 (13
3§ e

= 1(-2-15)— (-4-9)j+ (10— 3k =—17i +13j+ 7k

i b ='J(—17)2+(13}2+(7)2 ~507



Example 23 Find a unit vector perpendicular to each of the vectors (g +E} and
(¢ —b), where .Ef:f+j+IE, 5:f+2j+3£ .

Solution We have G+b =2 +3j+4kand a—b=—] -2k

A vector which is perpendicular to both -Ef +b and @—b is given by

- -

i j ok
(G+D)x(d—b)=[2 3 4|=-20+4j-2k (=C, say)
0o -1 -2

Now 1] = yA+16+4=24=25

Therefore, the required unit Vector 18

\m

_la Qed -
2]~ V6 6 e

There are two perpendicular directions to any plane. Thus, another unit

3}

1
vector perpendicular to ii+b and d—b will be Jk —— k. But that will
5

be a consequence of '(Ef —5) x(d +5) :

Example 24 Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3)
and C(2, 3, 1) as its vertices.

Solution We have AB = j+2k and AC=i+2 . The area of the given triangle
P ol
is —| ABXAC|,

k
2=—4i+2j—k
0

B =

Now, ABxAC =0
1

Therefore |ABXAC| = J16+4+1=~21

1
Thus, the required area is > \/ﬁ



Example 25 Find the area of a parallelogram whose adjacent sides are given
by the vectors =3 + j+4k and b =i — ] +k

Solution The area of a parallelogram with a andb as its adjacent sides is given

by |axb]|.
i ]k

Now Gxb =13 1 4=5i+j-4ak
1 -1 1

Therefore |Ex§| = 25+1+16=+/42

and hence, the required area is /42 .

Example 26 Write all the unit vectors in XY-plane.

Solution Let 7 = x 7+ yj;' be a unit vector in X Y-plane (Fig 10.28). Then, from the
figure, we have x = cos 6 and y = sin 0 (since | 7| = 1). So, we may write the vector 7 as

7(=OP)=cos 7 sin j .. (1)
Clearly, 7| = \fcos;’e+ sin’ @ =1
(

L

X'

'\ f’
Y
Fig 10.28

Also, as 0 varies from 0 to 27, the point P (Fig 10.28) traces the circle x2+y* =1
counterclockwise, and this covers all possible directions. So, (1) gives every unit vector
in the X'Y-plane.



Example 27 If H j k,2i 57,3 2j 3k andi 6] k are the position
vectors of points A, B, C and D respectively, then find the angle between AB and

CD . Deduce that AB and.ﬁ)ﬁ are collinear.
Solution Note that if 6 is the angle between AB and CD, then 6 is also the angle

between AB and CD.

—_—

Now AB = Position vector of B — Position vector of A

= 20 +5)—(+j+k)=i+4j—Fk

Therefore |AB| = J(l)z +@ + (=D =32

Similarly D = —2i —8j+2k and |CD|=6+2
AB CD

Thus cos O = m

1)+ 4()+ (1) 36

(3v2)(63/2) 36

Since 0 < 6 < 7, it follows that © = . This shows that AB and C_D are collinear.

=-1

—_—

Alternatively, AB % CD which implies that .A—B and CD are collinear vectors.

Example 28 Let 4,5 and ¢ be three vectors such that |7|=3,|b |=4, |¢|=5 and
each one of them being perpendicular to the sum of the other two, find | G+b4e -
Solution Given a - (5 +¢) =0, b (c+a)=0,c-(a +§} =0.

+ZP = @+5+8)? =(@+b+8)-(G+b +7)

)

Now |a+

G-d+d-b+8)+b-b+b-(G+7)
+ E(@+b)+EE
=|aP +15P+|cP
—0+16+25=50
Therefore -|&+5+E| :-\/5_025\5



_—

Example 29 Three vectors g, » and ¢ satisfy the condition a + b+ =0. Evaluate

the quantity p=a-b+b-¢+¢-a, if |al=L |b|=4 and |E|=2.

—

Solution Since & +5b +¢ =0, we have

or d-d+a-b+d-¢c =
T = 2
Therefore da-b+a-c = —|a| =-1
Again, b(ag+b+e) =0
oL 2
or a-b+b-c:—|b‘ =-16
Similarly G-c+b-C =—4.

Adding (1), (2) and (3), we have
2(d-b+b-tra-d) =21

_ 21
or 2u=-21,1e, L= T

L (D)

-2
N6



Q. Explain various derivatives of Vectors.

Sol.

Reecall that if u, v, w are vectors and « is a scalar, there are a number ot difterent produets that can be
made;

Name of product Formula | Type of result
Scalar multiplication au Vector
Scalar or dot product u-v Scalar
Vector or ecross produet | u x v Vector

Now consider the vector differential operator

g o 0
V—(%%*&)-

This is read as del or nabla and is not to be confused with A, the capital Greek letter delta. One can form
“products” of this vector with other vectors and scalars, but because it is an operator, it always has to be

the first term if the produect is to make sense. For example, if f is a scalar field, we can form the scalar
“multiple” with V as the first term

B (e 9 <f0f Qf.0Ff
Vf_(@a"‘c)y’c‘?:)f—(01"61}'62‘)’
the result being a vector.

Below we will introduce the “derivatives” corresponding to the product of vectors given in the above
table.

The derivatives of vectors are :

1, Gradient (“multiplication by a scalar”™)

This is just the example given above. We define the gradient of a scalar field f to be

grad f =V f = (af of ﬂ)

or’ 8y’ 02

We will use both of the notation grad f and V f interchangably.

Remark Note that f must be a scalar field for grad f to be defined and grad f itself is a vector field.

2 Divergence of a vector field (“scalar product”)

The divergence of a vector field F = (F, Fy, F3) is the scalar obtained as the “scalar product” of V and F,

divF =V -F= 5 = By + 5

It is so called, because it measures the tendency of a vector field to diverge (positive divergence) or converge
(negative divergence). In particular, a vector field is said to be incompressible (or solenoidal) if its divergence
is zero.

Figure 4.3 shows the vector fields F = (z,9,0), G = (z,—y,0) and H = (-2, —v,0) in the zy-plane. We
have

r  dy
divF=—+—=2>0
v o -+ By >
and similarly, divG = 0 and divH = —2 < 0. Notice how the arrows on the plot of F diverge and on the

plot of H converge.
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F, positive divergence G, incompressible H, negative divergence

Figure 4.3: Positive and negative divergence

A particular example of divergence is the Laplacian of a scalar field. Given a scalar field f, grad f =V f
is a vector field and the divergence of V£ is the Laplacian of f, written V2f. This means that

dzf+ 4. ¥

2
Vii=v-(Vi)= dx2  Jy? :':?,13

This definition may be extended in a natural way to the Laplacian of a vector field ¥ = (Fy, F5, F3).

’F = (V2F,V?F;, V?F;)

3 Curl of a vector field (“vector product™)

The curl of a vector field F = (Fy, Fa. F3) is the vector obtained as the “vector product” of V and F

oF,
HEE
09)

OF; 0. 0F1_6_F1>.+ ok,
oy 0z 32 oz )] (ar

Like any other vector product. curl F can be calculated using a 3 x 3 determinant,

curlF =V x F= (

X g ik
B a o d dFs aF,\. [0F, 0F;\. oF, OF;
anlE =l Tay a~‘ (o_,, W)”(T‘W)”(W"Ty)k
F F R

In particular, a vector field is said to be
—y,2.0), G = (y,z.0) and

The curl of a vector field measures its tendency to rotate.
irrotational if its curl is the zero vector. Figure 4.4 shows the vector fields F = (



H = (y,—z.0). We have

i § ok
a a a
curl F = -(‘Z a—y 'Eg =2k
-y x 0

and similarly, curl G = 0 and curlH = —2k < 0. The coefficient of k in curl F being positive indicates
anticlockwise rotation.
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F. anticlockwise rotation G. irrotational H., clockwise rotation

Figure 4.4: Clockwise and anticlockwise rotation

Q. write the Identities for vector derivatives.

sol.

There are analogues involving div, grad and cur! of the elementary rules of differentiation such as linearity
(f+g)(z) = f'(z) + ¢'(x) the product rule (fg)'(z) = f(z)¢'(z) + f'(z)g(z).

Let f and g be smooth scalar fields and F and G smooth vector fields. Then all of the following are
straightforward to prove (as illustrated m Example 4.12) just using definitions

grad(f + g) =grad f +-gradg grad(fg) = f(grad g) + (grad f)g,

div(F + G) =divF +divG  div(fF) = fdivF + (grad f) - F,

curllF + G) =curlF + curl G cwrl(fF) = feurl F +grad f x F,
curl grad f =0, diveurl F = 0.

In particular, note the special cases
grad(cf) = cgrad f, div(cF) =cdivF, curl(cF)= ccurlF,

when ¢ 1s a (scalar) constant.
All of the identities are easier to remember if written using V. For example,

eurl(fF) =V x (fF)
=f(VxF)+(Vf)xF
= feurl F +grad f x F.



Problem Find the angle between the planes 3x =6y =2z =15and 2x+ y—2z =5,
Solution

Usmg (11), 1t can be seen that the vectors

n,=3t-6fj-2k, n,=2+j-2k

are normals to the given planes 3x — 6y — 2z = 15 and 2x+ y — 2z = 5, respectively. The angle
between them (using the definition of dot product) is

= ces"'( S1eth )
AN

Example 1 Determine if F = x°yi + 0z 7 - x°p* ¥ is a conservative vector field.

Solution
So all that we need to do 1s compute the curl and see if we get the zero vector or not.
i g &
= | d 3, 3,
cutl # = —  — —
ox  dy oz
2y mz -t

:—2x2y5h+yz£_:h— (—2:{}‘2 })—Ry;—xgg
:—(2x3y+xy:|z'++ 21yjf+(yz—x3)g

=1
S0, the corl 1sn°t the zero vector and so this vector field 1z not conservative.

Example 1: Determine if the vector field F = _\r'z:'i + (le +2) 3 ~ (2xyz- 1) k 1s conservative.
Solution:

i j k
curlF = i i i
x oy &
P O R

i 7 k

|2 & &

cx oy oz

}-'z2 xz’+2 2xyz -1

= (2xz—2xz)i —(2vz—232); + (z2 -z? )k
=0
Therefore the given vector field F 1s conservative.



Example 2: Find the curl of F(x. v. 2) = 3xi + 275 —xk.
Solution:

i
curlF =V><F=£

o 2
Q| mw.
ENR R

| o &

Pl oo
h’ tg_)l().)'\a.

2
3x
c

é a A\ (@ 8 Y. [%. . 8 3
=|=—x- 8—2(22)} —(a(—X)—gﬁx ))J + (5(22) > (3x ))k

\
=(0=2fi—(=1-0)7+(0-0)k
=294

w4

Example 3: What 15 the curl of the vector field F=(x+y +z. x—y—z. 2+ }“.2 + 22)‘?
Solution:

: F %
curlF=V><F=£— —a- i
éx oy é&z
2 O R
i J k
_fof 4 &
ox cy oz
Xty +7Z| B-y-2 x2+yz+z2
Qa2 >, 2 8 Boia a2y B
=| =+ F 2 ) ——Ax—y=—2) | — (X" 1ty +2")-—+yt2) j+
,B.v( ] )&( y )} (&x( y )az( ¥ )}]

c 5
(a(x—} =Z) —a(x+y +z)}'<

=Qy+Di-Q2x-1)j+A-Dk
=2y +Di+(1—22)7+0k
=(2y+11-2x,0)



Example 4: Find the curl of F = (x"' —yhi+dy +x2k.

Solution:
 oF &
(:urIF=V><F=i i i
o&x &y &z
P 9 R
i Z &
_| e 2 &
& 6y oz
(xl—y_) 47 x°
3 ,
s IS i AR g Bl s }]
=l —x)——H@) |- | —E&x)——Ex=" -+
\ay( ) az( )) (ax( ) 82( »

& 3
[5(42) = 5(12 = }))k
=(0-4)i—(2x-0)j+(0+Dk
=(—9)i—- (20 j+1k

=(—4.-2x1)
dy
Q1 Ex) y'+ysecx=cosx , y=—
dx
solution
dy

& p(x)y=0(x) = p(x)=secx , Q(x)=cos’x
X

M= exp_[sec xdx =explin decx+tanx
J=secx+tanx

general solutionis
Hy= I #Qdx+c
So(secx+tanx)y = I( secx + tan x).cos’ dx

= I(cos.\‘ +sin xcosx)dx

; E
=smx+5smx+c



d\ v2

Ex) — —-<_=3sin x
d\ X
solution
dy v _ )
=2 2 =380y
dx «x
Z d\
put z=y andthen —=2y
X d\

dz + 2-
d\

M= expjpd\—expf dx=exp2Inx = expln x’

=6 sin x  thisequation is lincar

- |?l

L a=x

Ex) x’p*+3xpy+2y° =0
Sol
«p+y :!cp+2)r._;-:0

xp+y=0 or xp#E2y =0
xﬂ +y= 0 or =0
dx

d
dy dx
——\- — I- —‘— or —' -I 2
Iny+Inx=Inc, or lny-}-Zlnx=lncz
xy—¢, =0 or x*y—ec,=0
s(xy—c)(x*y—c,)=0
and this is the generalsolution of theequation.



Ex) 3y=2px—2£ \ B
X dx
Solution
2 2P : o~ ;
y= 3 px——;— by differentiation withrespect tox
3 x
Wy Bdp 2. 1dp 27

dx 3 dx 3 p\dt 21

1 2pt (2. 4p)dp

Lo BPC L AR . multiplying by 3
31) 5: %" 3 3x/dx G
p_zp: 2(: ~2 £ Jdp ,_ multiplying by x*
xt x ) dx
dp

px*=2p* =2(x! =2px)—
d.r

p(x* -2p)=2x(x" - 2p)—
dx

dx
dp = > P
2— = =2x—
dx E “
_[2(1_\' =I xdx I I
x3
2)'=T|c lnp=;lnx~>p:\/;

to delete p fromtwoequation substituting about p on origin equation

y=—x



EXx) x=p+p’ ; p—ﬂ

dx
by differentmtion withrespect toy
de dp+3p2d_p ,but l:ﬁ
dy dy dy P
1 _a-3 _)dp
p dy
dp 1
dy p(1+3p*)
[dy=[(p+3p")dp

v —_l_ 2 +.§ 4
r=3 P 1 r
x=p+p' (the origin equation)

wecannot delete p from the last tow equations so
this the parametricsolution.

Ex) y=2xp=+p

-‘!-"-.- 2p+2x -‘1’1+?.p£’—’
dx dx dx
p = 2()(2.:—2p)@:>-p —(2x-—2p)d—p
dx dx
B .
(S P & Y
p dx dp p
dx 2x . g ; .
— +—=-2  lincar differential equation
dp p

y—cxpj2d7p integral factor

M= ploy piy= .[—Zp"dp



V'+y' —6y=8e"
(D*+D—-6)y=0

—3

A+2-6=0
$-2 4+3 =0
A=2 , A=
y,=Cie* +Cre ™
¥, =———— 8e

D" +D-6

Deva

8 3x 4 3x
y,’:—e = —@

6 3

general solution

2 —
y = C, e + Cie 3‘+-§e‘

3x

— —
Yo 9+3-6

Y=Y+,

4 3x

8e3.\



