Name of the Department	:	Physics
Name of the Course	:	B. Sc. (H) Physics – CBCS – NC - Core
Semester	:	Ι
Name of the Paper	:	Mathematical Physics I
Unique Paper Code	:	32221101
Question Paper Set Number	:	А
Maximum Marks	:	75

Instruction for Candidates

- 1. Attempt FOUR questions in all.
- 2. All questions carry equal marks.
- 1. Solve the following first order differential equations
 - a. (2x + 3y)dx + (y x)dy = 0b. $(x 2)\frac{dy}{dx} = y + 2(x 2)^3$ c. $(x^2 + y^2)dy xy dx = 0$

 - d. A machine produces 1% defective components. If the random variable X is the number of defective components in production of 50 components, then find the probabilities that X takes the value 2.
- 2. Solve the following second order differential equations

a.
$$(D^2 - 5D + 6)y = e^x$$

- **b.** $(D^2 3D + 2)y = \sin 2x$
- **c.** $(D^2 + 16)y = \sin x$ (Use the method of variation of parameters)
- 3. Find the constants a and b so that the surface $ax^2 byz = (a + 2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2).

Show that $\vec{E} = \frac{\vec{r}}{r^2}$ is irrotational. Find ϕ such that $\vec{E} = -\nabla \phi$ and such that $\phi(a) = 0$ where a>0.

4. Is there a differentiable vector function \vec{V} such that,

$$\nabla \times V = \vec{r}$$
$$\nabla \times \vec{V} = 2\hat{\iota} + \hat{\jmath} + 3\hat{k}$$

If yes, then find \vec{V} . Find the value of $\nabla^2 \ln r$

5. Verify Green's theorem in the plane for $\oint (y - \sin x) dx + \cos x dy$, where C is the triangle formed by points $(0, 0), (\frac{\pi}{2}, 0)$ and $(\frac{\pi}{2}, 1)$.

$$\iiint\limits_{V} \frac{dV}{r^2} = \iint\limits_{S} \frac{\vec{r} \circ \hat{n}}{r^2} dS$$

6. Derive an expression for $\nabla \times \vec{A}$ in orthogonal curvilinear coordinates. Evaluate $\iint \vec{A} \cdot \hat{n} \, dS$, where $\vec{A} = z\hat{i} + x\hat{j} - 3y^2z\hat{k}$ and S is the surface of the cylinder $x^2 + z\hat{k}$ $y^2 = 16$ included in the first octant between z = 0 to z = 5.