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Q 1(ii)

Ans. Let m1, m2 and vi, v» be the mass and velocity of particle 1 and 2. As both of
these objects have same kinetic energy then -

o
2:'711{'! = ’2‘"[.:1‘5
. o O
0. "ll [l'-‘ — ,"',_' !'5
If my< .m,, ' then
V1> V2

-

The momentum is mv.
MUy . U = mgl,. U,

Pi Y

= <1

2 Uy

Py < pyor P> P,
. The heavier body has more momentum.

Q 1(iii)

Ans.: Potential energy curve of a particle is the graphical representation of
potential energy with respect to position of the particle.
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It tells us about stable and unstable equlibrium points.

Stable equilibrium exists if the net force is zero, and small changes in the system
would cause an increase in potential energy.

Unstable equilibrium exists if the net force is zero, and small changes in the
system would cause a decrease in potential energy.
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Q 1(v)
Ans.

Center-of Mass of semi circular wire:

JIY

(T,

¥

drn.
_/'"" g

Total length of semicircular wire = R
and elemental length = Rdq

Derivation:

X
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Magnitude of

Q 1(vii)
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Ans, Total energy . E, of a rolling body is :
E= K +K,

= 1yl
2 2
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Q 2(i) Ans.

A damped harmonic oscillator is displaced by a distance z; and released at time ¢ — (. Show that the
subsequent motion is described by the differential equation
d2 .

m—l +.my d_:r + gz = 0
gz 03%= D

or equivalently
mE + myd + mwiz = 0,

with = — xg and # = Oat { = 0, explaining the physical meaning of the parameters m, v and wy.
Solution: The forces on the mass m are F, = —kz = —mw{z due to the spring and Fy = —mya due to
friction 7. The equation follows from Newton’s law mi = F, + F.

The characteristic polynomial for ansatz z(t) = ¢ is A2 + 4\ + wi = 0 leading to eigenfrequencics



We get (i) overdamping when v > 2wy and hence solutions do not oscillate, (ii) critical damping for
= 2wq and (iii) underdamping for v < 2wy. Different solutions are shown in Fig. 1. The general
solution is given by
z(t) = R{AeM’ + Age*'} .

and can be simplified for the different situations (writing a = /|w3 — 72/4]) for the three cases
(i) #(t) = ¢ /2| Acosh(at) + Bsinh(at)] or equivalently z(t) = ¢ "/2(Ce™ | De )

(i) x(t) = e /2(A+ Bt)

(iii) =(t) = e "/2|Acos(at) + Bsin(at))

using the standard procedure for degenerate roots of the characteristic polynomial in (ii).

By matching the initial conditions we find for the different cases

(i) A==p and B = z5y/(2a) or equivalently C = zo(a + v/2)/(2a) and D = zo(a — v/2)/(2a)
(i) A =z and B = z¢7y/2
(iii) A = zp and B = zo7/(2a)

overdamped itical underdamped
x(t)

ﬂ(*) XKt)
Figure 1: Oscillator displacement for different dampings.

The energy stored in the harmonic oscillator is the sum of kinetic and elastic energy

mi(t)®  mwlz(t)?

2 U 2 :
In order to proceed for the lightly damped case it is easiest to write z(t) = A cos(at — ¢)e™"/? and thus
i(t) = —Aasin(at — ¢)e "% —z(t)/2. Since lightly damped means v < wy we may neglect the second
term in #(t) and approximate a =2 wg. Then the expression for the energy simplifies to

E(t) =

2
By = Tl A%
A radian corresponds to the time difference 7 = 1/wp and so we find the energy lost per radian
2
Er, = E(0) — E(1 /wg) = %Azu —e M) @AZ.

by expanding e™7/“0 as 1 —~/wy for ¥ < wp. Hence the result Q = E(0)/EL = wo/7y follows as required.

We now turn to the forced damped harmonic oscillator. The solutions to the homogeneous equation will
damp out on a time scale 1/4. At times ¢ > 1/v only terms arising from the particular solution will
remain. These terms describe the stationary state®. We work out a particular solution using the ansatz
z(t) = N {A(w)e** } and find

r

m(wd — w? + iyw)

Aw) = = [A(w)le

where

E arctan ( —"— for w<wy
A = et and = (=)
my/ (Wi — w?)? + y2w?)

7 4 arctan (—,‘1?—’—;) for w>w
w(.—w



Magnitude |A(w)| and phase ¢ are shown in Fig. 2 as a function of w. The velocity is given by &(t) —
R {i|A(w)|we™?} = —|A(w)|w cos(wt — (¢ + 7/2)), i.e. there is an additional shift of 7/2 compared to
the displacement. The additional factor of w shifts the maximum amplitude of () compared to that of
z(t). Amplitude and phase of &(t) are shown in Fig. 2.

Alay

S 0

wlad wlwd

~An-0

Figure 2: Displacement and velocity response to periodic driving for v = wg/10 and v = wqg/4.

The maximum of the displacement amplitude is found by solving d|A(w)|/dw = 0 giving a resonance
frequency w? = wg — 47 /2. For the maximum velocity amplitude we solve djwA(w)|/dw — 0 and find the
resonance frequency w; - wy.
We write the full width half maximum as Aw = wy —w; with A(w;_12) = A(w.)/2. We take the square
of this expression and find
1 . 3 1
(wi —wi)? + 2w A(ag~ wi)? o w?

Q 2 (i

This can be re-written as v* + 4%(w?  4wg) + (w§  wi)® = 0. This can in principle be solved for w;
but since we have assumed the oscillator to be lightly damped and have worked out quantities like @
only to lowest order in +/wy we instead only look for a solution valid to this order. We thus substitute
w; 2wyl + By) obtaining v* + 2 (Bywe — 3wd) + 8%y%w? = 0. We now ignore any terms of @(v*) and
O(+*) and thus get the approximate solution 3 = ++/3 and thus wf — w? ~ +v/3ywy to lowest order. A
Taylor series expansion in 7 /wo yields

Aw = ws — Wy = Wp (\/l—t—\/g‘y/wo—\/l—\/ﬁ‘y/wo) ~V3y.

Hence Aw/wy = V3v/wo-

Near resonance w = wy and we thus find for the energy of the oscillator
FZ

2my?”

m
2

The average supplied power is given by

P = Fcos(wt)i(t) = — F|A(w)|weos(wt) sin(wt — ¢) = — F|A(w)|weos(wt) (sin(wt) cos(@) — cos(wt) sin(p))

mwd

E
2

#(t)* + z(t)? =

Near resonance we have ¢ = 7/2 and w = wy so that

- F|A(w0)|wn . F2

B 2 C 2my”

In the steady state the energy dissipated per radian must be equal to the energy supplied by the external
force per radian E;, = P7 = P/wy. Thus

Aw V3
and — =—.

wo Q



Q3
Ans. Suppose that, in the center of mass frame, the first particle has velocity v-
before the collision, and velocity i after the collision. Likewise, the second

Va2 Vé

particle has velocity "< before the collision, and "<after the collision. We know

that

V) My Vo =1y vy +myvy, =0 (368)
in the center of mass frame. Moreover, since the collision is assumed to be elastic
(i.e., energy conserving),

!
Vi = Vi, (369)

!

Va = V3. (370)

Let us transform to a new inertial frame of reference--which we shall call

the laboratory frame--which is moving with the uniform velocity —Vz with
respect to the center of mass frame. In the new reference frame, the first particle
has initial velocity Vi =v1 — V2, and final velocity Vi=v—vy Furthermore,
the second particle is initially at rest, and has the final velocity V=V, — V2 The
relationship between scattering in the center of mass frame and scattering in the
laboratory frame is illustrated in Figure 23.

center of mass frame laboratory frame
[
Y V'; Vl
T Vi - -E h Vl - zﬁ'
, ./
V3
¢

Figure 23: Scattering in the center of mass and laboratory frames.

In the center of mass frame, both particles are scattered through the same angle 0.
However, in the laboratory frame, the first and second particles are scattered by the

(generally different) angles P and C, respectively.

Defining x- and Y-axes, as indicated in Figure 23, it is easily seen that the
Cartesian components of the various velocity vectors in the two frames of
reference are:


http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#lab
http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#lab

vi = v (1,0), (371)

v; = (my/mz)v (-1, 0, (372)
vi = Vy(cosB, sinB), (373)
v, = (mi/my)vi(—cos8, —sin), (374)
Vi = (T+m/ma)vi(1,0), (375)
V! = vy (cos® +m,/my, sind), (376)
V, = (my/my)v; (1 —cosB, —sinB). (377)

In the center of mass frame, let E be the total energy, let E:+ = (1/2) . vi
and E2 = (1/2) myv# be the kinetic energies of the first and second particles,

respectively, before the collision, and let B =(1/2)m, V1
and B2 = (1/2) my vy’ be the kinetic energies of the first and second particles,

respectively, after the collision. Of course, E=E+E=E+E |nthe
laboratory frame, let £ be the total energy. This is, of course equal to the kinetic

= (1/2) m, v;?

energy of the first partlcle before the collision. Likewise, let €

and & = (1/2) myV5? be the kinetic energies of the first and second particles,

respectively, after the collision. Of course,
B =L &

The following results can easily be obtained from the above definitions and
Equations (371)-(377). First,

£ — (M) E. (378)
maz

Hence, the total energy in the laboratory frame is always greater than that in the
center of mass frame. In fact, it can be demonstrated that the total energy in the
center of mass frame is less than the total energy in any other inertial frame.
Second,

! ma
gL = E = (—) E, (379)

my + My


http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#e7.51
http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#e7.57

’ my
B o= Ee(mrm)E 1250)

These equations specify how the total energy in the center of mass frame is

distributed between the two particles. Note that this distribution is unchanged by
the collision. Finally,

g ‘mZ+2mym; cos® +m7 c

1 = _ (M + my)2 ’ (381)
e [2my;m; (1 —cos @)

) = (0 1 )2 (382)

These equations specify how the total energy in the laboratory frame is
distributed between the two particles after the collision. Note that the energy
distribution in the laboratory frame is different before and after the collision.

Equations (371)-(377), and some simple trigonometry, yield
sin @

tanip =
v cos @ + mq/ms>’

(383)

WOhen m, = My

tanh = Lin §
tos @ +\
tanf = 3 in®)5) cod &2)

2 cos” ®l

5ton%
5 B @

. 2 s = —\
The. deneminalos Cam X O 1&@

o We = oD
e o . hoise G
MHemce, Jawo hit €ase e o

= Lu? = %\mfn volue ¢} 90°.


http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#e7.51
http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#e7.57

Q 4(i)
Ans.

fa e R

Ans. Consider two frames of reference SX Y, %) and 8'X, Y, Z) [Fig.]
They have common origin and § is rotating with an angular velocity w about
the axis Y’ relative to S. Here S is inertial frame of reference and S’1is non-
inertial frame of reference.

Y
Y

z" :
The observer O.in frame S observes that the observer O’ tn frame S'is
rotating with an angular velocity w. The observer & observes that 0 is rotating
_with an angular velocity - w. Consider a particle P in space. '

Position vector r of P in reference frame S is given by ‘

r= ix+ ks o . B s W LG
The position vector r' of Pin referencevframe S'is given by

rl= 1% F iy +R2 ~.(11)



As both the systems have the same origin O,

r=7

r= %+ Jy'+ k2 ..-{(111)

At.cordmg to observer O, the frame of references 8’ is not rotating and its
anit vectors remains constant, therefore differentiating equation (ii)

drt | adat dydet
R T dz”a
'gf.i+j'§-z.'+k'dz

: 5 A 7y v -.{1v)
V"is the velocity of P measured by O’ relative to its own frame of reference
S'(x,y,2)
According to observer O, the frame S’ is rotating and its unit vectors are

also changing in direction. Therefore differentiating equation (iii) with respect
to time

V=i

ar - tar Y d e +x'.dt-'+3fjld¢.

wa— .U(V)

The end points of Uit vectors i, i, k’ are in uniferm circular motion with
angular velocity w relative to observer O,
. dl c
dt

4
dt

dk'
it
Substituting these values in equatioii V)
dr x| L dy' 2t
dz [ dr "T!Zt_+k'—c7:—J
Hw X £9x"+ (X jy" + (w x k)z]
or V= V+wxr (vi)

. Here V is the veloeity of P as observed by O and V is the velocity of P as
pbserved by O

Acceleration

Fl The acceleration of P as measured by O relative to reference frame S'is
iven by

= Wwxi

= wx kr




g = ——= =

dt @ dt o SN elW

The acceleration of P as measured by O’ relative to reference frame S’j
given by

v _ Vs .dVy . dve

i,dV'x'Fj,dV'y+k,dV'z (viii
dt dt dit i

Differentiating equation (vi) with respect to time, taking w to be constant
dv av' dr

a'=

Ft-' = i +wx&—g- (lx
Also from equation (iv) .
. V= iVe+ Vo + bV k)
Differentiating with respect to time :
av' _ [.dVa’ .dVy ..dvet
di —[‘ =V e 5—]
0 e
3. et L s VI AN
O [detﬁllVydt—# 2 dt]
N (0D :
E- = a’+w X.V' 2 ...(sz)‘
Also \ —3{- = V=' V' wxr (i) !
Sub‘stitutipg these values in equation (ix)
-ddt—_v = a't+wx V';f'zux V'+w % (w X r).‘
or 3 a=.al+ 2w X V4w (wx ) « (X111)

Here a is the -accelerat'ioiildf P as observed by O and a’ acceleration of P as

observed by O”. The termis 2wxV is called the Coriolis acceleration and wx(wxr)

corresponds to centripetal acceleration.

Also S e GT= a2 Vg (wxr) e (X1V)
Here —w x (' x r) is called centrifugal acceleration because of its negative
sign_— L e

Q 4(ii)
Ans.
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Q 5(i)
Ans.



Let there are two inertial frames of references S and §. § is the stationary frame of
reference and 5’ is the moving frame of reference. At time t=t'=0 that is in the start, they
are at the same position that is Observers O and O’ coincides. After that §° frame starts
moving with a uniform velocity v along x axis. The speed v is relativistic speed that is
comparable to the speed of the light.

Let an object is placed in the frame 5. The coordinate of the initial point (A) of the object
will be x1 (see the second line till A from S in figure) according to the observer in S and the
coordinate of the final point will be will be x2 according to same observer.

The coordinate of the initial point (A) of the object will be X1 (see the second last line till A
from S’ in figure) according to the observer in 5’ and the coordinate of the final point will
be will be x'2 according to same observer.

Therefore the length of the object as seen by observer O’ in 5" will be

L'=x2-x1 (1)

The length L’ is called the proper length of the object. Proper length is defined as the
length of the object measured by the observer which is in the same frame in which the
object is placed.

The apparent length of the object from frame § at any time t will be

L=x2-x1 (2)

As we have already derived and discussed Lorentz transformation equations for space and

time and now use Lorentz transformation equations for space, that is
X'1=(x1-vt)/(Vi—-v*/c?) (3)
X 2= (x2-vt)/(Vi-v3/c?)  (4)

By putting equations (3) and (4) in equation (1) and solving, we get



L' = (x2 —x1)/ (vV1—-v3/c?)

Substitute equation (2) in above equation,

L' =L/(v1-v3/c?)

Or Apparent length that is the length from frame S will be
L=L(V1-v*/c?) (5)

This is the relation of the length contraction in relativity.

Time dilation

Imagine a gun placed at the position (¥, ¥, 2) in S’ Suppose it fires two
shots at times ¢, and t,' measured with respect fo 5. Tn S™ the clock is at rest
relative to the observer. The time interval measured by a clock at rest relative
to the observer is called the proper time interval. Hence, ¢, =, - t,"is the time
interval between the two shots for the observer in S’ Since the gunis fixed in S,
it has a velocity v with respect to S in the direction of the positive X-axis. Let ¢
=t,- t, represent the time interval betwean the two shots as measured by an
observer in S. :

From inverse Lorentz transformations we have

t; +ux'le?
J-@ic)
t, +ux'te

1- @ 1c?)

b

and by =

-t
;;l -@*lc?)

-
w
I
o~
=
I

t

or’ = —m—
\h—(vzicz)

Q 5(ii) Ans.
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Q 5(iii) Ans. 8, 3, 4
Ans, One of the particles has a veloeity 0.8 C and the other - 0.8 C. ,
The theorem of velocitias has to be used. Let us consider a sys tem S in
which the particle having velocity - 0.8 Cis at res t. The laborator (S)is
moving with velogity 0.8 relative to S, ] {
' = 08¢
v= 0.8C

- _u."+u
i '
ll

S

Y CZ

08C+08C

I

o
(-]
=
o
ot
()

Q 6(i) Ans.



Ans. Thus, if B and V be the position vector and velocity respectively of the
centre of mass of a system of particles relative to a fixed or a reference point,
and r, and v, the position vector and velocity of a particle of mass m of the
system, relative to the centre of mass, the position vector and velocity of
the particle relative to the fixed or reference poini will clearly be r =R+
rrandv=V+v, respectively. Hence, the angular momentum of the
system about the fixed orthe reference point will, as just explained above,
be given bym '

J= EmB+r)x (Viv)=Xm@BxV)+ImRXxv)

y +Zm(rcx V+EIm(r.x vc)
Now, r,= {r—R) and .. mr,=mr— mR
or Imr, = Smr—SmR=3Ymr-MR

[+ ¥m =M, mass of the system.]

But, as we know, the inherent property of the centre of mass demands
that
' MR = myr,+ mgry+... =xmr

We, therefore, have

Ymr -MR= Oor Zmr,=0.

Similarly, Ymu,= 0 _

So that, the above relation for J simplifies to —

L d = RxMV+Z(rxmu)

Here, clearly. X(rc X ) is the angular momentum of the system about the
centre of mass, say,/,,, and MV= P, the momentum of the centre of mass or
the total linear momentam of the system. We therefore, have ;

| e J= RXP'FJ‘,‘”L ;

i.e., the total angular momentum of the system about the fixed or lkle‘referencé
point is the vector sum of the angular mqhien.tqn;-of‘ﬂze centre of mass about
that point and the angular momentum of the system about the centre of mass.

Q 6(ii) Ans.



Ans. A central force is a force which always acts towards or away from a
fixed point. Let “F” be the central force acting on a particle. Then it is revresented

as:F= r f(r) where r is a unit vector along the direction of r and is equal to r/
r and/(r) is a scalar function of the distance r. When we apply the central forces
the torque acting on a particle is given by

—

5 dL A
T = 7 where L is the angular momentum.
T = rxF
= rxrf(r)
= flr)rx’
r
But rxr = 0
T = 0

t for central force field about origin in zero

showing that' L = constant
The angular momentum of a particle moving under the influence of a central
force always remains constant,

Q 6(iii) Ans. R ==
Ans. Let obe the point of sending the projectile with an initial velocity u at
an angle a with the horizontal. '

Y?

0 L A %
The vertical component of velocity = u sin 0
using the equation for 1. otion upwards,

1
§= ut-— -2'312

; 1 .2
y= u,sm(!t—-igt

When the projectile comes back at 4,y = 0



1
0= usinot— —Z-gtl

Solving the above,

2usino
t=0ort=
g
Zusina .
¢ = 0, corresponds t point O and ¢ = corresponds to point A.

The time of going up and down is the same. Therefore, the time for reaching

2usina usino
or :
4 g
The horizontal component of velocity is u cos o and it is constant. H

|
the highest point is =k

orizontal

ucosa(2usina) = u? gin 20
g8 g

range is u cos(Zt)_ or

2 53] 77 ku:.l_ot_
The time for mid-point of the horizontal range is Et(or— = } X

This clearly shows that the projectile reaches the highest point in the same
time in which it covers half the horizontal range.

Q 7(i) Ans. To find the rocket’s velocity as a function of time, we first need to find
how the velocity changes with respect to time, the differential equation
mentioned in the problem statement.

The relation dm/dt=ym, y >0 may seem inconsistent with other usages, but the
problem statement is correct; the fuel is being exhausted at a rate ym>0. A more
dm

dt
exhausted fuel must provide an upward thrust to the rocket.

¥ v+dv-u v+dv

mathematically precise statement would be =ym . Inany event, the expulsion of the

-~ —

= g

" dm m-dm

As suggested by the figure, take the system to be the rocket and fuel
combination. The small square (red, if viewed in color) represents the differential
mass dm of fuel ejected in the differential time dt . The initial momentum in the
forward (upward, but to the right in the figure) direction is



(4.11)

plmllu) =my
where m is the combined mass of the rocket and fuel. The final momentum is

Pioa =(m—dm)(v+dv)+dm(v+dv—u)
=(mv+mdv—-vdm)+(vdm—udm) (4.12)

=mv+mdv—udm

and so the change in momentum is
dp = pliml = plmh.\l = md"-“d’" " (413)

Note that in going from the second line in (4.12) to the third, the second-order
differential terms dmdv cancelled nicely; if they had not cancelled, we would

have discarded them anyway.
the change in momentum divided by the differential time dt is the net external

force,

mdv—udm
————=mg -bmv
di
dv | dm
— T —— —b" (415)
dt m dt &
=yu—g—bv
Q 7(ii) Ans.
Ans, (a) F= a*~p
Fdx — @y

— dl7 = Fdx = (ax® - b)dx
dlU = (b - ax*)dx

U= J(b—a:cz)dx

3

r x°
U= bx—-a—+C

>

Boundary condition,
U= Qatx=0

0= C
3
U= bx-a=
3
(i1) For equilibrium, F= 0
ax®*-—- b= @
Va
#3
Now 7= bx—-a=—

Q 8(i) Ans.



Ans. Gravitational potential due to a solid sphere.
1. Gravitational potential
(a) Ata point outside the solid sphere. Let Pbe a point distant r from the
centre O of a solid sphere, of mass M and radius R, outside the sphere, ie., with
r>R, (Fig.), where the gravitational potential due to the sphere is to be

-

determined.

Imagine the sphere to consist of a number of spherical shells (shown
dotted), one inside the other, concentrie with the sphere, and of masses m L Mg,
“m, ete. Then, gravitational potential at P due to each spherical shells = - {mass
of spherical shellyx G/R. So that potentials at P due to the different shells are
—my G/R, — m, G/R, — m, G/R etc. And, therefore, potential at P due to all
the shells constituting the sphere, i.e.; due to the whole solia sphereis given by V
=—(m, + m,+my+..) G/R, because potential is a scalar quantity.
© Clearly, (m, + m, + mg+ ..) = M, the mass of the solid sphere. So that,
gravitational potential at P due to the solid sphere, i.e.,
M
V=< B G.
Again, therefore, the sphere behaves as though its whole mass is concentrated
at its centre. . o
(b) At a point on the surface of the solid sphére. Clearly, if the point Plies
on the surface of the solid sphere, we have r = R, the radius of the sphere.
So that, grauitational potential at a point on the surface of a solid sphere

M
=26
R
(¢) At apoint inside the solid sphere. Let the point P now lie in-side the
solid sphere at a distance r from the centre O of the sphere, (Fig.), i.e., now
r< R. 3 ‘




The solid sphere may be imagined to be made up of an inner solid sphere of
radius r surrounded by a number of spherical shells, concentric with it and with
their radii ranging from r to R. The potential at P due to the whaole solid sphere
is then clearly equal to the sum of the potentials at P due to the inner solid
sphere and all the spherical shells outside it.

Clearly, point P liés on the surface of the inner solid sphere of radius r and
inside all the spherical shells of radii greater than r. So that, potential at P due
to the inner solid sphere of radius r.

mass of sphere
i) el
r

4
__TUJPG/’. - _gmsz :
3 3

because mass of the inner solid sphere= %xr’p , where p is the volume density

of the sphere.

To determine the potential at P due to all the outer shells, let us consider
one such shell of radius x and thickness dx, i.e., of volume = area X thickness =
dnx®dx and hence of mass = 4nx’dxp. : A

Since potential at a point inside a shell is the same as that at a point on its
surface, we have ‘ :

' . 4mx’dx '
potential at P due to this shell = - uxx o= 4nadxpG

- potential at P dueto all the shells

R R ;
I—41thgcdx = -4apG dex
r N r

= S=R
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- potential at P due to the whole solid = :
s 3 phere = potenti i
solid sphere + potential at P due all the outer spherll?gal x::heal]l;l i
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[Multiplying and dividing by R3]
4

Clearly, gnrjp is the mass of the whole solid sphere,i.e. M.

- gravitational potential at P due to the solid sphere, i.¢e.,

M (3R? - )

v - =

It follows at once, therefore, that if the point Plies at the centre of the sphere,
we have r = 0. So that, gravitational potential at the centre of the solid sphere

= -M(?ﬁ;—]c
R

G

3
= e w7
2 R

But ‘%{G » a3 we know, is the gravitational potential on the surface of the
sphere. ’
Q 8(ii) a Ans.
The radius of the sphere is R. Let us consider a disk of radius ,r located at a .
distance, x from the center of the sphere. For purposes of calculation here in, let
us state its thickness to be dx

r=+vR2 2%

The volume of this disk is thus:
dV = nridz = n(R? — 2?)dzx
The mass of this disk is:

dm = pdV = np(R? — 2®)dx



We know that, over a uniform body:
I= [r?2dm

Therefore,

I= [r?(mp(R? —2?)dz

= 7p VI;)R(R2 —x2)2%dz

Carrying out the integration, we obtain:
[=2ps

4xpR*
3

And since M = pV =
Substituting the given value for p

I=2/5MR?

Using parallel axis theorem,
Moment of inertia across the tangent is,

le= 1+ MR?
lt = (7/5) MR?
Q 8(ii) b Ans.
" I > MR
®) RS ™5™
Kr= 5 -
2 ..
= gxﬁ‘xa
= 10 em*

K= 10 em



