B.Sc. Physics (Hons.)
Mechanics (2017)



















n
Pen = 2o M _Ito) do)+3><(¢.\
=1 = 5,

2 m [ 42 +%
="'
= -_9_‘ = o
X6 9 .
fom = E n(?' o) + A1y + 3J5
" o=
z M ) 2+ 3
o
= 2+ 28 Loy A3
2 = 1
5 3 4
Sy lkathe Moss 4 (L oy L +3
T (4 37%)
Q 1(ii).
Ans.

If the force f acting on a body has following characteristics then itis a central force
(i) it depends on the distance between two particles

(ii) it is always directad towards or away from a fixed point.

Gravitational force is an example of central forces. Mathematically if we

consider central point as origin

_}
f(r) = f(r)(£r)

where + stands for repulsion forces and - for attractive forces, f(r) is
the magnitude of the central forces and # is unit vector in the
direction of central forces.

Multiplying equation (1) by 7 on both the sides we get

o f(r) = £r) {7 x 7)
This gives,
f(r)=0
SincerP X7 =20
but we know that

- d’r
T)=m——
flr)=m—
Therefore,
. d¥%
rxm— =10



dt

where R is a vector which does not depend on time and is perpandicular to the plane formed by the position
vector 7 and velocity %:— . Thus the plane formed by 7 and velocity %E— will also remains constant. Therefore the

(i" X d_r) — constant(h)

particle will always move in the same plane.
The torque due to central forces can be found out by the above expression. Torque

'T:F X _'F('F‘} :F b f(?’)f' — 10
But, we know,
dJ
dt

This implies thet J isa constant quantity and it is known as angular momentum. Thus angular momentum is also

T =

conserved. But
. R dr -
P xp=F xm—=h

dt



Q1 (iii).
Ans, The equation of damped harmonic oscillation is—

mdx < dx
yre F=F, =k~ C-f—'-

where F,, is the applied force; k is the spring constant for displacement x and ¢ is
the damping coefficient. When F, =0

Then i"—‘!—- 2y, -}-l-w,’xno

where o, = \[‘Z; and r=2s/:7k is the damping ratio

Energystared 1
Energy lost percycle 57

when © value is high then the energy stored is much higher than the loss and
there is no effect on the frequency of the harmonic oscillator as the damping

Quality factor Q= 27 »

12,
reduces frequency by L

Qo

Q1 (iv).

Kepler’s three laws of planetary motion can be stated as follows:

(1) All planets move about the Sun in elliptical orbits, having the Sun as one of the focii. (The Law
of Ellipses)

(2) A radius vector joining any planet to the Sun sweeps out equal areas in equal lengths of time.
(The Law of Equal Areas)

(3) The squares of the sidereal periods (of revolution) of the planets are directly proportional to
the cubes of their mean distances from the Sun. (The Law of Harmonies)

Q1(v)
Ans.
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https://www.britannica.com/science/motion-mechanics
https://www.britannica.com/science/Keplers-first-law-of-planetary-motion
https://www.britannica.com/place/Sun
https://www.britannica.com/science/elliptical-orbit
https://www.britannica.com/science/orbit-astronomy
https://www.britannica.com/science/Keplers-second-law-of-planetary-motion
https://www.britannica.com/science/vector-mathematics
https://www.britannica.com/science/planet
https://www.britannica.com/science/Keplers-third-law-of-planetary-motion
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Q 1(vi)

Ans.

In a conservative force field, the potential energy of a particle is in general a function of space.
So, changing from point to point a function shows the potential energy of the particle at every
point of the space. this curve is called as a potential energy curve.

The condition for a position to be stable or unstable is found from the curvature d?U/dx? at the
point.
e If the curvature is upward (d*U/dx?> 0) and dU/dx= 0 (a minimum in U(x)), then the position

is stable.
e If the curvature is downward (d?U/dx?< 0) and dU/dx =0 (a maximum in U(x)), then it is
unstable.
e and the point where d?U/dx?= 0 then it is a neutral point.
th(x)

o



Q 1(vii)
Recessional velocity is most pertinent to distant galaxies, which (due to Hubble's law)
redshift proportionally to their distance from the Earth. The redshift is usually interpreted as due
to recessional velocity, which can be calculated according to the formula

v=HyD
Where H, is the Hubble constant, D is the proper distance, and v is the recessional velocity. The
recessional velocity of a galaxy (or any cosmological object) at a particular distance is also termed
as Hubble velocity

V= HD ’
= 3;&\0“&)\9)((0"& AYXBLSKZE60D
B-514R 16T ml|e

Hence. elativietic .

Q 1(viii)
Ans. Following important conclusions can be drawn from the negative results of Michelson-
Morley experiment.
1. The velocity of light is constant in all directions.
2. The effects of ether in entire space of the universe are undetectable.
3. A new theory with different concepts of space, time and mass is needed. Thus, we must
think of different set of transformation in contract to Galilean transformation which failed
to give correct results.

Q2(a)
the center of mass is given as
Jydm
J[dm

You =

Now, substituting the values ¥ = rsin 8 & dm = ordrdf, we get

I [ or? sin6d0 dr

You
I ordd dr

3y sm6ds) * dr

K de)rar
Ch@dr 2f
- ﬁ,n(w)rdr - Wfonrd'l‘



https://en.wikipedia.org/wiki/Galaxy
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https://en.wikipedia.org/wiki/Redshift
https://en.wikipedia.org/wiki/Hubble_constant
https://en.wikipedia.org/wiki/Comoving_and_proper_distances#Uses_of_the_proper_distance
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Ans. Suppose that, in the center of mass frame, the first particle has velocity v1 before
. W % . . ]
the collision, and velocity ! after the collision. Likewise, the second particle has

Vv I
velocity 2 hefore the collision, and Vzafter the collision. We know that

mvy+myvy =1 v +mav; =0 (368)

in the center of mass frame. Moreover, since the collision is assumed to be elastic (i.e.,

energy conserving),
!

Vi & Vi, (369)

!
V3 = Va. (370)

Let us transform to a new inertial frame of reference--which we shall call the laboratory
frame--which is moving with the uniform velocity —V2 with respect to the center of
mass frame. In the new reference frame, the first particle has initial

velocity V1 = V1 — V2, and final velocity Vi =v; — V2, Fyrthermore, the second
particle is initially at rest, and has the final velocity V,=V;— V2 The relationship
between scattering in the center of mass frame and scattering in the laboratory frame is
illustrated in Figure 23.


http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#lab

center of mass frame laboratory frame

V.I'
f
Y Vi !
T V1 £ V3 Vl

. -

M - 1"!?»
¢
!
Vi
Figure 23: Scattering in the center of mass and laboratory frames.

In the center of mass frame, both particles are scattered through the same angle ©.
However, in the laboratory frame, the first and second particles are scattered by the

(generally different) angles P and €, respectively.

Defining x- and Y-axes, as indicated in Figure 23, it is easily seen that the Cartesian
components of the various velocity vectors in the two frames of reference are:

v, = v (1,0), (371)
v, = (my/my)vy (-1, 0), (372)
vy = v (cos®, sinB), (373)
vy = (my/my)vi(—cosB, —sinb), (374)
Vi = (14+my/my)v(1,0], (375)
Vi = v, (cosB+m,/my, sind), (376)
V, = (my/mz)v (1 —cos®, —sind). (377)

In the center of mass frame, let E be the total energy, let E1 = (1/2) . v{

and E2 = (1/2) m,v7 be the kinetic energies of the first and second particles,
respectively, before the collision, and let B = (1/2)m,vi? and E2 = (1/2) myvy?
be the kinetic energies of the first and second particles, respectively, after the

collision. Of course, E=E +E=E+ Ez In the laboratory frame, let £ be the
total energy. This is, of course equal to the kinetic energy of the first particle before

' 12
the collision. Likewise, let € = (1/2) m, Vi* and £2= (1/2) ma V3 be the kinetic
energies of the first and second particles, respectively, after the collision. Of course,
E=E+&

The following results can easily be obtained from the above definitions and
Equations (371)-(377). First,


http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#lab
http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#e7.51
http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#e7.57

£ = (MJ E. (378)
mz

Hence, the total energy in the laboratory frame is always greater than that in the
center of mass frame. In fact, it can be demonstrated that the total energy in the
center of mass frame is less than the total energy in any other inertial frame. Second,

T2
E o= E = (—) E,
] ] my + ms (379)
4
E, = E,= (—) E.
2 2 my + my (380)

These equations specify how the total energy in the center of mass frame is
distributed between the two particles. Note that this distribution is unchanged by the
collision. Finally,

g ‘mZ+2m;m, cos® + m? .

| (my + ms)? ’ (381)
g [2m; m; (1 — cos )

2 — i ['ITL] + Tl‘l-z]z : (382)

These equations specify how the total energy in the laboratory frame is distributed
between the two particles after the collision. Note that the energy distribution in the
laboratory frame is different before and after the collision.

Equations (371)-(377), and some simple trigonometry, yield
sin ©

tani = , 383
v cos 0 + my,/m; (383)

Differentiating Equation (383) with respect to 8, we obtain
dtanl}p 1+ (m;/m;) cos® (356)

de  (cos®+m;/my)2°


http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#e7.51
http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#e7.57
http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#e7.63

tan
Thus, W attains an extreme value, which can be shown to correspond to

a maximum possible value of 1]'}, when the numerator of the above expression is
zero: i.e., when
mz

cos = ——.
m;

Note that it is only possible to solve the above equation when my > M2 it this is the
case then Equation (383) yields:

my/m,
tan Pmax = ) (388)
V1 — (ma/m,)?
3(b)Refer your textbook # a/f;\
3(c) - = W

Q4(a)
Ans. Let us consider a cylinder of length L, Mass M, and Radius R placed so that z axis is along its
central axis as in the figure.


http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html#e7.63

We know that its density p=Mass/Volume=M/V.

Let us consider that the cylinder is made up of infinitesimally thin disks each of thickness dz. If dm
is the mass of one such disk, then

dm = p x Volume of disk

or dm=MVx(nR2.dz),

since V=Areal of circular face x length=ntR’L, we obtain

dm=MnR?Lx(nR?.dz)

ordm=MLdz ...... (1)

We know that moment of inertia of a circular disk of mass m and of radius R about its central axis
is is same as for a cylinder of mass M and radius R and is given by the equation

Iz=12mR?. In our case

diz =12dmR2......(2)

Observe from figure 2, that this moment of inertia has been calculated about z axis. In the
problem we are required to find moment of inertia about transverse (perpendicular) axis passing
through its center. Knowing that the desired axis of rotation is transverse, therefore we need to
apply perpendicular axis theorem which states:

The moment of inertia about an axis which is perpendicular to the plane contained by the
remaining two axes is the sum of the moments of inertia about these two perpendicular axes,
through the same point in the plane of the object. It follows that

diz=dIx +dly .....(3)

Also from symmetry we see that moment of inertia about x axis must be same as moment of
inertia about y axis.

~dix=dly...... (4)

Combining the equations (3) and (4) we obtain

dix = dlz2, Substituting 1z from (2), we get

dix = 1/2x1/2dmR?

or dix = 1/4dmR?

Let the infinitesimal disk be located at a distance z from the origin which coincides with the
center of mass. Now we make use of the parallel axis theorem about the x axis which states: The
moment of inertia about any axis parallel to that axis through the center of mass is given by
IParallel axis = ICenter of Mass + Massxd?

where d is distance of parallel axis from Center of mass.

dix=1/4dmR2+dmz? ......(5)



Insert the value of dm calculated in (1) in moment of inertia equation (5) to express it in terms of
z then integrate over the length of the cylinder from the value of z=-1L/2 to z = +L/2
Ix=[dIx=[1/4(M/L)dzR? + [z2M/Ldz

Ix=1/4MLR?z+MLz33],

ignoring constant of integration because of it being definite integral.

Ix =1/4.MR?/L [L/2 - (-L/2)] + M/3L.[(L/2)3 - (-L/2)3]

or Ix =1/4MLR?/L + M2L3/3L/23

or Ix=1/4MR?*+1/12ML?

Q 4(b)

Ans. In a pure translatory motion, all the particles in the body, at any instant of time, have equal
velocity and acceleration. Kinetic energy is a scalar quantity with no direction associated with it.

- 1 ) l 9 l o
@ 3 myvT + 3 Mot~ + «++ + 3 myv”
1 2
== (my +mg + -+ +my v
1 9
= > i‘jh(;,d_\,- v,

In case of a rigid body in pure rotation, all the particles on the body rotates in circular motion
with their centers lying on the same axis

1

h EPr:?'r.'.Fl'l'a?r’LMuJ? e I[:-' W,

KE = 1/2. (1/2.MR2)(v/R)? = 1/4. Mv?2
Hence the ratio of these K.E. is 1:2.

o Moment OIB Intesia 0; biggen 5{”"‘1%
| 50 % MR,
| 3
T e NVolume i vV, = HaR
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Q5(a)

Ans.
1. Gravitational potential

() At a point outside the solid sphere. Let P be
;point distant r from the centre O of a solid sphere, of
w5 M and radius R, outside the sphere, i.e, with » > R,
fig. 12.14), where the gravitational potential due to the
ghere is to be determined.

Imagine the sphere to consist of a number of spherical
ills (shown dotted), one inside the other, concentric with
% sphere, and of masses m,, m,, m. etc. Then, as we have
#nunder §12.13, 1 (a), above, gravitational potential at P due to each spherical shell = - (mass of
Pherical shell) x G/R. So that potentials at P due to different shells are —m, G{R, — my G/R/my G/R
%.And, therefore, potential at P due to all the shells constituting thc? sp.here. i.e., due to .lhe whole
id sphere i given by V= (m, +my +my+ ...)G/R, because potential is a scalar qyanlxoz.

Clearly, (m, + my + my + ...) = M. the mass of the solid sphere. So that,

Fig. 12.14

. ie. V= _M_G
Favitational potential at P due to the solid sphere, i.., V= =="1

Again, therefore, the sphere behaves as though its whole mafs is wnfenrrqted at ;\ts ci;r:frz.e o
(b_) Ata point on the surface of the solid sphere. Clearly, if the point P lies on the s
solid sphere, we have r = R, the radius of the sphere.

: M
$ } e = -—@.
S0 that, gravitational potential at a point on the surface of a solid spher R |

(¢) At a point inside the solid sphere. Let the point P now lie inside the <.
distance r from the centre O of the sphere, (Fig. (12.15), i.e., now r<R. solid Sph

The solid sphere may be imagined to be made up of an inner
solid sphere of radius r surrounded by a number of spherical shells,
concentric with it and with their radii ranging from r to R. The potential

at P due to the whole solid sphere is then clearly equal to the sum of the

poteatials at P due to the inner solid sphere and all the spherical shells
outside it,

Clearly, point P lies on the surface of the inner solid sphere of

radius r and inside all the spherical shells of radii greater that r. So that
potential at P due to the inner solid sphere of radius r. '

mass of the sphere 4 '
V- G=s ——mqp3 4
> 37 PGlr= "3"’206.

potential at P due to this shell = -‘L’“i‘_ﬂ
She % G e 41depG.

Potential at P dye to all the shells
= F—Mthxdx



2
= —4RpG rm = —4np6[‘_‘.22_]
=.4RPG[M va 4 o AR =)
2 3o
2 2
= _%an(3R ;3")

*. Potentigl - '
at P due to the whole solid sphere = potential at P due to inner solid sphere + potents

at P due to all the spherical shells
. 4 5 4 3R* — 3,2
3P 3 G ( B

4 2 2 1_2
- “gnpc(rz-q-lg_-i): _ﬁan(—L - )

2 3 7
= -snRz 3R2- 2 . e k,]
carly, 37 ? pG[TR;‘)- [Multiplying and dividing®
3
Cl IYl 3 Pis ‘he mass °fthc ol

2R’
‘;‘f&llo“ at once, theretore, that if the point P Jies af the centre of the sphere, we have r= 0. So

““mvf tational potential at the centre of the solid sphere
| 3R 3
M[ZR, ] 3 Mg
But _%-G.as we know, is the gravitational potential on the surface of the sphere,

We thus have gravitational potential at the centre of solid sphere = % time the gravitational
qu on its surface.

Or, gravitational potential at the centre of the solid sphere: gravitational potential on the
srface of the sphere . 3 : 2,
This means, in other words, that the gravitational potential due to a solid sphere has its

(negative) value at its centre.
1. Gravitational field

(a)Atapolltout:ldetheuﬂdspthoknawMthcmvimﬁomlpownﬁalna
Pmtsideuolidsphacdismntrﬁ'omitscenne(i.e.,withr>k)isgivenbyV--MGIr,
1215.1 (a).

Mﬁmeh!enmyofthegnviuﬁondﬁcldaapohnisequdwmepmmﬁdmm,

have

Gmi!arionalﬁddductoasolidsphmatapodeirtamrﬁomIumw(r>R).i.¢..E=

-%[ MG] = MzG. rhemcasthoughthcwholem(u)ojlhe:phaum
r




b - '
)03:.' Point on the surface of the solid sphere. For a point on the surface of the solid

"Ously, p = R, the radius of the sphere. We, therefore, have

4
3

'?‘htlnlldetbuolld muwolmow.mcmﬁnﬁwlgow&llapohw
%l,ﬁmmmg‘"m,dg)isgimbympmtﬂwm“w

gravitational field due to a solid sphere at a point P inside it, distant v from its centre, i.e.,

2 .2
E= v _ _d|_ MG(M_"’Z
dt dr 2R?
= =M -2—"3 = - M? r* showing that £ a 7,
2R R
Thus, the intensity of the gravitational field at a point inside a solid sphere is directly proportional
to the distance of the point from the centre of the sphere. ’

Q 5(b)

Ans.

!

_____ /.M
2 2 - R

V=MG (3R ;r) 3 M
3R V=-—2--§-G

() Gravitational potential due to a
uniform solid sphere.

Q6(a)



Let’s drive our damped spring-object system by a sinusoidal force. Suppose that the x -
component of the driving force is given by

F (t)= F,cos(wf) , (23.6.1)

where F, is called the amplitude (maximum value) and @ is the driving angular

Jrequency. The force varies between F, and —F, because the cosine function varies
between +1 and —1. Define x(f) to be the position of the object with respect to the
equilibrium position. The x -component of the force acting on the object is now the sum

dx

F_= F,cos(wt)— kx— E]E : (23.6.2)
Newton’s Second law in the x -direction becomes
dx d*x
F cos(mt) —hkx—b—=m—— . 23.6.3
o CoS(1) dt dt” ( )
We can rewrite Eq. (23.6.3) as
d’ 7
F, cos(@f) = m——+ b+ kx . (23.6.4)
dt* dt

We shall now use complex numbers to solve the differential equation

E-cos(eat) = mo b 2% k. (23.D.1)
i dt drt

We begin by assuming a solution of the form
x(f)=x,cos(wt+¢) . (23.D.2)

where the amplitude x, and the phase constant ¢ need to be determined. We begin by
defining the complex function

z(f) = x " . (23.D.3)

Our desired solution can be found by taking the real projection

x() = Re(z(?)) = x,cos(wt + ) .

Our differential equation can now be written as

Fﬁemzmd :7+EJ£
dt” dt

+kz .




We take the first and second derivatives of Eq. (23.D.3),

dz o
E“): iwx,e " = iwz . (23.D.6)

d’z T ifet+s) 2

e (f)=-w'xe =—m'z . (23.D.7)
4

We substitute Egs. (23.D.3), (23.D.6), and (23.D.7) into Eq. (23.D.5) yielding
Fe™ =(—w’m+biw + k)z = (~0 m+ biw + k)x "™ . (23.D.8)

We divide Eq. (23.D.8) through by €™ and collect terms using yielding

o F,/m
X, = T : (23.D.9)
(@, - )+i(b/ m)w)
where we have used mol =k /m . Introduce the complex number
7, = (0, — 0 )+i(b/ mo . (23.D.10)
Then Eq. (23.D.9) can be written as
w
xge’ =—2 (23.D.11)
my

Multiply the numerator and denominator of Eq. (23.D.11) by the complex conjugate
7, =(0," —©*)—i(b/ m)o yielding
 BRE

xe =
(i}

15 (@ —o)-iblme) (23.D.12)
Z, m(@,—o°) +(b/myo’)

mz 1

where

E .. —w’
u=—2 _ (qDE ) — (23.D.13)
m ((@," —w”) +(b/m) @)




F (b/ m)w

y=—-2L — — . 23.D.14
m (0, — @) +(b/m)w’) ( )
Therefore the modulus x; is given by
3 .17 F JII’
=) e (23.D.15)
(w,"—@” )y +(b/m)y m”)
and the phase is given by
—(b/
fﬁ:tan_l(vr’u):% . (23.D.16)
(w{. —w )
Oscillator Equation. The solution to 1s given by the function
x(t)=x,cos(@t +¢) , (23.6.5)

where the amplitude x, is a function of the driving angular frequency @ and is given by

EF I'm
x, ()= 0 . (23.6.6)

(o/ mP o + (0 - o) )

The phase constant ¢ is also a function of the driving angular frequency @ and is given
by

(0] —%

W, = JE (23.6.8)
n

is the natural angular frequency associated with the undriven undamped oscillator. The x
-component of the velocity can be found by differentiating Eq. (23.6.5),

()= tan_l[ (3 m){f] . (23.6.7)

In Egs. (23.6.6) and (23.6.7)

v.(f) = %(3) — —wx, sin(wt+0) (23.6.9)

where the amplitude x,(@) is given by Eq. (23.6.6) and the phase constant ¢(®) 1s given
by Eq. (23.6.7).

Q6(b)
Ans.
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Q7(a)

Ans. The longitudinal Doppler Effect considers the simpler case of a source moving directly
towards you or away from you along a straight line. The transverse Doppler effect, on the other
hand, considers what is observed when the observer is displaced in a direction perpendicular to
the direction of the motion.

You can derive the relativistic Doppler shift from the Lorentz transformations. Let's start in the
frame of the moving rocket, and let's take two events corresponding to nodes in the emitted
wave (i.e. 1/f). Then in the rocket's frame the two events are (0, 0) and (t, 0), where tis the
period of the radiated wave. To see what the period of the radiation is in our frame we just have
to use the Lorentz transformations to transform these two spacetime points into our frame. For
simplicity we'll take our rest frame and the frame of the rocket to coincide at t=0. This is
convenient because then the first event is just (0, 0) in both frames. Now the Lorentz

transformations tell us:
VT
t= (t - — )
c2

z' =5 (z—vt)

If we're tranforming from the rocket's frame to ours, and the rocket is moving at velocity v wrt us,
then we have to put the velocity in as -v, and we're transforming the point (z, 0). Putting these in
the Lorentz transformations we find that the point (t, 0) in the rocket's frame transforms to the
point (yt, pvt) in our frame.

The last step is to note that if we're sitting at the origin in our frame the light from the event at
(yt, yvr) takes a time yvt/c to reach us. So the time we see the second event is yr+yvt/c and this is
equal to the period of the radiation, T’ in our frame:

' =y +yvr/e

We just need to rearrange this to get the usual formula. Noting that f' = 1/7’ and f = 1/7 we take
the reciprocal of both sides to get:

1

f'= f¢[1 +v/c)

To simplify this note that:


https://en.wikipedia.org/wiki/Lorentz_transformation
https://en.wikipedia.org/wiki/Lorentz_transformation

1 i 2
vy V7 e

v v
:\/(1"2)(1+z)

and substituting this back in our expression for f’ we get:

V(@ —v/e)(1+v/c)
1+uv/e

V(1 —v/c)

vi+u/e

c—v
c+v

f'=f

= f
Q 7(b).
Ans
The relativistic mass formula is articulated as,

my
m = ——

Where,

the rest mass is mg .
the velocity of the moving body is v |

Velocity of lightis ©

As the velocity of the particle (v) approaches the velocity of light (c) the mass of the object
becomes infinity, which is not possible. Beyond ¢ the mass becomes imaginary, which is also not
possible. Hence the ultimate speed of the particle in free space is c.

Q8(a)

Ans.

According to Newtonian mechanics the mass of a body does not change with velocity. However, conservation laws, especially here the
law of conservation of momentum, hold for any inertial system. Hence, in order to maintain the momentum conserved in any isolated

system, mass of the body must be related to its velocity. So according to Einstein, the mass of the body in motion is different from the
mass of the body at rest. We consider two inertial frames S and 5" as in Figure 8.5.
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Figure 8.5 Collision between masses viewed from stationary and moving frames of reference

We now consider the collision of two bodies in S’ and view it from the S. Let the two particles of masses my and mj are travelling
velocity u * and-u ‘ parallel to x-axis in S’. The two bodies collide and after collision they coalesced into one body.

In System S : Before Collision: Mass of bodies are m1 and m2 . Let the their velocities are uj and up respectively.

In System S: After Collision: Mass of the coalesced body is (mj+ mp) and the velocity Is v..

Using law of addition of velocities

u'+v

4= ——=r —u'+v
Uy= —

A u'v
¢t I=—3

c

and

Applying the principle of conservation of momentum of the system before and after the

collision, we have,

my uy +mp up = (M +mpy)v

-
w+v ~“u'+v
C2 J L c
o | 4 v' [ ~u'+D
1 1+u’v = u'v
2 SR
c ol L c
ul
14+ =5
m . c
u'v
n, 1-5



Now, using equations (1) and (2), we have

M1/m2 = [V 1-(u2 /92 /+/ 1-(u7 /©)?]

Let the body of mass mp is moving with zero velocity in S before collision, i.e., u2 = 0,
hence, using equation (3), we have,

my /my =1/ +/ 1-(uy/c)?

Using common notation as m;= m, mz = m g, Uy = v, we have by using equation (4).

Mg

m =

Total energy and momentum are conserved in an isolated system, and the rest enexgy
of a particle is invariant. Hence these quantities are in some sense more fundamental
than velocity or kinetic energy, which are neither. Let us look into how the total en-
ergy, rest energy, and momentum of a particle are related.

We begin with Fq. (1.23) for total energy,

z

me
Total energy E= == (1.23)
1 - v
and square it to give
2 4
,  mc
E 1 — v2/c?

From Eq. (1.17) for momentum,



Momentum

we find that

Pl s mu2c?
- =
1 — v
Now we subtract p*c* from E*:
B 22 m2c® — m2i? | mi(l — v
2N R e 1 — v¥c?
= (mc?)*
Q 8(b)
Ans.
Solution : (i) Given that p = momentum = 10m,c.
m
We know that p = mass x velocity =my = £ -
L W
(1-%)
my Vv
10 myC = —:Zﬂr
(-%)
This gives. 1—Y R
gves, 1-7=10¢ ) = 100c2
- 1\ vZ _ 100
or l—(l+loo)-57 or -(—:T—TOT .......
12
v=190)" ¢ (0.990)2 c = 0.995¢
=0.995 x 3 x 10" cm/sec = 2.985 x 10'° cm/sec.



(i) We know that rest mass of electron
=me=9x%x10"2gm.

mg 9 x10-2

=9 x 1072 x/(101) gm
=9 x 1072 x 10,0499 =90.449 x 10"2 gm
Energy of the electron at the speed v=0.995c is
E=mc*=(90.449 x 10~2) (3 x 1092 =814.04 x 1075,



