Elements of Modern Physics
Solved Paper — 2018

I. Answer any five of the following: 5 x3=]5

(a) Under favourable conditions human eye can detect

1078 J of electromagnetic energy. How many 6000 A
photons does this represent?

(b) Define the lerms: metasta
and population inversion.

(c) For what kinetic energy will a particle’s de Broglie
wavelength equal its Compton wavelength?

(d) If the lifetime of a particular excited state in an atom
is 1.0x10* s, use' the uncertainty principle to

compute the line width of light emitted by the decay
of this excited state.

(e) A nitrogen nucleus (mass = 14 x Proton mass) emits
a photon of énergy 6.2 MeV. If the nucleus is

initially at rest, what js the recoil energy of the
nucleus in eV?

(f) Write the semi-empirical nucle
formula for a nucleus of mass number A, containing

Z protons and N neutrons explaining each term used
in the expression.

ble states, optical pumping



(g) An electron is confined to a one-dimensional infinite

potential well of width L = 1.0 nm. Calculate.thg
energies of the ground state and the first two excite
states.

2. (a) Describe Davisson-Germer experiment. Explain how

the experiment directly confirms the de Brogl})e
hypothesis of matter wave. 5,2

(b) Show that the de Broglie wave group associated with

(c)

(b)

(c)

4. (a)

(b)

(¢)

5. (a)

a moving particle travels with the same velocity as
the particle. . 3
What are the main features of photoelectric effect?

Discuss how Classical Physics fails to explain these.

(W)

In a two-slit experiment using electron, a working
monitor that can tell through which slit the electron
passes destroys the interference pattern on  the
screen. Explain  the observation, using  the

uncertainty principle. 5.2
Show, on the basis of uncertainty principle, that
electrons cannot reside inside a nucleus. 3

Use the uncertainty principle to estimate the
minimum energy of a particle in a simple harmonic
potential %4 Ax”. 5
Discuss the Born probabilistic interpretation of the
wave function. Write the conditions required for
physical acceptability of wave function . ot
Consider a wave function of the form

y(x) = Ae Pl
Normalize the wave function. Find the corresponding
wave function in momentum space. 4.4
What are the dimensions of y(x) and wip)? 2
A particle of energy E<V, is incident from left to
right on a rectangular potential barrier of height I/,
and width « as defined below:

Mix) =0  forx <0, region |



=¥, for0<x<a,regionll
=0 for x > a. region III
Write the Schrodinger equations and its physically
acceptable solutions in all the three regions. Using
these equations show that the reflection coefficient
for the particle is given by:

-

& inh’
o AE(,—E)
a V.’ 5
1+ ——2>——sinh"”
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where [ = \[2 & (I}O, ~E) 8
2

(b) A particle of energy £ strikes a potential step V.
Taking E>V,. distinguish between the classical and

quantum  behaviour of the  particle. Obtain
expressions for the reflection coefficient and
transmission coefficient. 7

6. (a) Mention the similarities between an atomic nucleus
and a liquid drop, on the basis of which the liquid
drop model of the nucleus was proposed. Obtain the
semi-empirical mass formula of a nucleus. 2.6

(b) Calculate the binding energy per nucleon for (i)
Oxygen-16 (atomic mass = 15.99492 a.m.u.) and (i1)

Silicon-29 (atomic mass = 28.97650 a.m.u.). Given

that mass of proton = 1.00728 a.m.u. and mass of

neutron = 1.00867 a.m.u.

4
(c) Estimate the mass of 1 mm® of nuclear matter of
2
*2’Th nucleus. 3

7. (a) Radioactive material A (decay constant A,) decays

into a material B (decay constant A;) which in turn
decays into a stable substance C. Assuming that a
sample contains only N, nuclei of material A at
time ¢ = 0, determine :

i. the number of B nuclei remaining after a

time ¢, 5w P



“G

i1. the time at which the number of B nuclei

is @ maximuim, and

7 i remaini after a
111 the number of C nucleil remaining after :
i )

times. | ‘. C R e e

(b) 2°Ra has a half-life of 1600 years. Bad 10 *
activity of a sample of one gram of pure ““"Ra’ 1at
would be the activity of this sample at the end of 4()21
years? _ 4,2

(¢) How do we explain the emission of Beta-particles
from radioactive nuclei even though they arc not
contained in them? What kind of observations on the
energy spectrum of Beta-rays led 'Pauli’ to propose the
neutrino hypothesis in 19307 3
1(a) Ans:

MNiL) =
E

o lE ik
=10 Ei:»]'l.nmtlt A=

E ) h-c E detect
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p]'tcrtv:m{ ~)

N(600-10°%) = 3.017

1(b) Ans:

Metastable states: It is excited state of an atom, nucleus, or other system that
has a longer lifetime than the ordinary excited states and that generally has a
shorter lifetime than the lowest, often stable, energy state, called the ground
state. A metastable state may thus be considered a kind of temporary energy trap
or a somewhat stable intermediate stage of a system the energy of which may be
lost in discrete amounts. In quantum mechanical terms, transitions from
metastable states are “forbidden” and are much less probable than the “allowed”

transitions from other excited states.

Optical pumping: It is a process in which light is used to raise (or "pump")
electrons from a lower energy level in an atom or molecule to a higher one. It is
commonly used in laser construction, to pump the active laser medium so as to
achieve population inversion.



Population inversion: A population inversion occurs while a system exists in a
state in which more members of the system are in higher, excited states than in
lower, unexcited energy states. The concept is of fundamental importance in laser
science because the production of a population inversion is a necessary step in
the workings of a standard laser.

1(c)Ans:

——

1(d)Ans:
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1(e)Ans Refer your textbook
1(f)Ans:

e ————
e

Z? A—27)?
E,(MeV)=ayA— aSAS—aC——aA( v ) +8(4,7)

A3

+06, for Z,N even
6(A,7) = 0
—0, for Z,N odd
1(g)Ans:
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2(a) Ans

The experimental arrangement is shown in Figure 4.2, A narrow beam of
electrons, accelerated through a potential difference V, was directed normally
towards the surface of a nickel crystal. The electrons were scattered n all
directions by the atoms in the crystal. The intensity of the scattered electrons
was measured as a function of the latitude angle ¢ measured from the axis of
the incident beam for different accelerating potentials. Figure 4.3 shows the
polar graph of the variation of the intensity with ¢ for I'= 54 volts. At each angle,



J Flectron gun

Detector

Incident beam —

Figure 4.2 Schematic diagram of the Davisson-Germer experiment.

¢=0°

¢ =90°

Figure 4.3 Polar plot of the intensity as a function of the scattering angle for
54 eV electrons.

the intensity is given by the distance of the point from the origin.
The Bragg condition for constructive interference 1s
nA = 2d sinf
where d 1s the spacing between the adjacent Bragg planes and » 1s an integer.
The angle @ is shown in the figure. We have
8+ ¢+ 6= 180°
180 — ¢
2
= 90° — (¢/2)

or 6=

From geometry,



¢

d = Dsin =
2
where D is the interatomic spacing. Therefore,
nA = 2D sin . sin [9D°—ﬂj
2 2

¢ ¢

= 2D sin — cos —
2 2

= D sin ¢
For nickel D = 2.15 A. Assuming that the peak at ¢ = 50° corresponds to first
order diffraction, we take n = 1. Therefore,
A= 2.15 x sin 50°
= 1.65 A
Now, according to de Broghe’s hypothesis, we have for electrons accelerated
though a potential difference V (Equation 4.7),

a=122 4

v

12.3

J5a

The agreement between the two values i1s remarkably close.
2(b) Ans

The phase velocity of a wave associated with a particle comes out to be greater than the velocity of
light which is impossible. This problem can be removed by considering a moving particle is
associated with a wave group or wave packet rather than a single wave.

Suppose a particle of rest mass mg s moving with velocity v. The angular frequency and propagation
constant is given by

= 1.66 A

w=2n f?"_ﬁ
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: m :
From theory of relativity —m= 2 A (3)
-5

Putting the value of m in (1) and (2) we get

Differentiating (4) and (5) we get

do _
dv h(l—*zfi
e

Dividing equation (6) by (7) we get
do _ do [dk
dk dv/ dv
Vg™V
Hence, wave packet associated with a moving particle travels with the same velocity as the

particle.
2(c) Ans:



The following interesting results were obtained in the study:

(1) No electrons are emitted if the incident radiation has a frequency less
than a threshold value v, The value of v, varies from metal to metal.

(2) The kinetic energy of the emitted clectrons varies from zero to a
maximum value. The maximum value of energy depends on the
frequency and not on the intensity of radiation. It varies linearly with the
frequency.

(3) The number of photoelectrons emitted per second, or the photoelectric
current, is proportional to the intensity of radiation but is independent of
the frequency.

(4) The photoelectric emission is an instantaneous process, Le., there is
negligible time lag between the incidence of radiation and the emission of
clectrons, regardless of how low the intensity of radiation is.

Failure of classical physics:
These results, except number three, cannot be explained if we consider radiation
to be wave-like, obeying classical electromagnetic theory. Classically, the
maximum energy of the emitted electrons should increase with the intensity of
incident radiation. The frequency of radiation has nothing to do with it. The
reason is that the force exerted on the electrons in the metal should be
proportional to the magnitude of the electric field E of the incident wave, and
the magnitude of E increases when the intensity of the radiation is increased.
Contrary to this, it is observed that the energy of the photoelectrons is
independent of the intensity of light but depends on the frequency. Further,
classically, electromagnetic energy is absorbed by the electron gradually and the
electron can be ejected only when this energy becomes more than the work
_,r‘i.'m'n'nuT of the metal. Therefore, there may be a time lag between the onset
of the radiation and the emission of the electron. The lag will be longer when
the intensity of radiation 1s decreased. No such time lags have ever been
observed, even with radiation of very low intensity. All observed time lags have
been less than or equal to 10" seconds.

3(a) Ans: refer your textbook
3(b) Ans: According to the Heisenberg’s uncertainty principle,

h
AzxAp = y

aw
Where m is the mass of electron,

Substituting, p=mv, we get,



h

4dmm
Now, if we consider the radius of the atomic nucleus to be 107*>m and mass of
electron, ‘m’ to be 9.1x1073! kg, we get

[0 T5A, > 6626+ 10~
v = :
~ 4+314+91%10%
= —34
B 6.626 % 10
T A%3.14%91 %103 %1070

AzxAv >

Av > H.79 100 n/s

Calulating Av, we get a value of

5.79%10'° m/s which contradicts the theory of relativity. What this means is that
if an electron exists in the nucleus, it has to travel with a speed of 5.79%10° m/s.
An object can only travel faster than light if it has no mass but electrons do have
mass, hence they can’t travel faster than the speed of light which is precisely
299,792,458 m/s.

Hence, an electron can’t exist in the nucleus.

3(c) Ans: The energy of the quantum harmonic oscillator must be at least

2 L Ax = position uncertaint
(Ap) +lmm"(.ﬂ):}2 3 .

E= _
2m 2 Ap = momentum uncertainty

Taking the lower limit from the uncertainty principle

Axb.p:g

Then the energy expressed in terms of the position uncertainty can be written

h? L o5
— +—mo*(Ax)
Sm(Ax)” 2

Minimizing this energy by taking the derivative with respect to the position

uncertainty and setting it equal to zero gives
.

o

. - ma*Ax =0
dm(Ax)



Solving for the position uncertainty gives
h

Ax = _|——

2mw

Substituting gives the minimum value of energy allowed.

h* 1 how ho (o

=t —me’(Ax) = — +—=
8m(Ax)~ 2 -+ 4 2

Ey

4(a) Ans:
If there is a wave associated with a particle, then there must be a function to represent it.

This function is called wave function.

Wave function is defined as that quantity whose variations make up matter waves. It is
represented by Greek symbol w(psi), w consists of real and imaginary parts.

W=A+iB

PHYSICAL SIGNIFICANCE OF WAVE FUNCTIONS (BORN’S
INTERPRETATION):

Born’s interpretation

The wave function y itself has no physical significance but the square of its absolute
magnitude |w?| has significance when evaluated at a particular point and at a particular
time |1p?| gives the probability of finding the particle there at that time.

The wave function y(x,t) is a quantity such that the product

P(x, )=y (x,t)p(x,t)

Is the probability per unit length of finding the particle at the position x at time t.

P(x.t) is the probability density and w*(x.t) is complex conjugate of w(x,t)

Hence the probability of finding the particle is large wherever 1 is large and vice-versa.

Condiitions required for the acceptability of awave function are as follows:



NORMALIZATION CONDITION

The probability per unit length of finding the particle at position x at time t iz

P=1P*(X.-I]'~P(K;t)

So, probability of finding the particle in the length dx is

Pdx=1"(x,thy(x,t)dx

Total probability of finding the particle somewhere along x-axis is

Jpdx =[ v (x,0w(xt)dx

If the particle exists , it must be somewhere on the x-axis . so the total probability of
finding the particle must be unity i.e.

JwixDw(x,t)dx=1 (1)

This is called the normalization condition . So a wave function Ww(x,t) is said to be
normalized if it satisfies the condition(1)



ORTHOGONAL WAVE FUNCTIONS

Consider two different wave functions w,, and w, such that both satisfies Schrodinger
equation.These two wave functions are said to be orthogonal if they satisfy the conditions.

Or Jw, (x,1) wo(x,t) dV=0 for n+m)] (1)
T w,* (1) po(x,t) dV=0 for m=n ]

If both the wave functions are simultaneously normal then

JWm Wy dV=1=[wp," dV (2)

Orthonormal wave functions:

The sets of wave functions, which are both normalized as well as orthogonal are called
orthonormal wave functions.

Equations (16) and (17) are collectively written as
Jw* pw,dV={ 0if m=n
=[1 if m=n

Ans 4b: refer Ans 4a

Ans 5a

Consider a beam of particles of mass m that are sent from the left on a potential barrier

0, x <0,
Vix)=1 W, 0<x<a,
0, x> da.



Classically. we would expect total reflection: every particle that arrives at the barmer (x = 0)
will be reflected back: no particle can penetrate the barrier, where it would have a negative
kinetic energy.

We are now going to show that the quantum mechanical predictions differ sharply from their
classical counterparts, for the wave function 1s not zero beyond the barrier. The solutions of the

Schrodinger equation in the three regtons yield expressions that are similar to (4.36) except that
un(x) = Ce¥ 4 DX should be replaced with yy(x) = Ce™¥ + Deh2¥:

wi(x) = 4&MX 4 Be—iMIX  y <,
wx) =1 wi)=C* 4+ De ™, (O<x<a, (4.48)
w3(x) = E&fx, X2

where k% = 2mE /K and k% = 2m(Vy — E)/h’. The behavior of the probability density
corresponding to this wave function 1s expected, as displaved in Figure 4.3. to be oscillatory in
the regions x < 0 and x > a. and exponentially decaying for 0 < x < a.

To find the reflection and transmission coefhicients.

B 2 2
et E
ER 412

we need only to calculate B and E m terms of 4. The continuity conditions of the wave function
and its dertvative at x = 0 and x = a yield

(4.49)

ULE = E4D, (4.50)

ikifA—B) = k(C-D), (4.51)

CEP LD ™ = pdhe (4.52)

k) (Ce’f—’“ = De—‘ﬁﬂ) = ikEdhe (4.53)

The last two equations lead to the following expressions for C and D:

g Bl elhi—hja, p=E (1) et (4.54)
2 k> 2 k>

Inserting these two expressions into the two equations (4.50) and (4.51) and dividing by 4. we
can show that these two equations reduce, respectively. to



B_E wel. as M o
1+ i AE _cﬂsh[hu] - rk2 sih(kra ]_ 7 (4.55)
1 — 8 = Ee'ih” cosh(kra) + fk—z sinh(ka) |. (4.56)
A A4 | k1 i

Solving these two equations for B/ 4 and E/ 4. we obtain

-1
K4k B -k
%: —i lk;g— sinh(kya) [z cosh(kra) + i Ehkzl Siﬁh{kgﬂ]} ] (4.57)
-
. =~k
g = 2e~tha [2 cosh(kra) + i l}rk 1 ainh[kga]} ; (4.58)
142
Thus. the coefhicients R and T become
7 3 il
B+BY- ., y B\ %
= = o] - i | 5
R ( h ) sinh™(ka) |:4c0511 {kga}+( oh sinh™(k2a) |, (4.59)
4 -3
Ef ) B-kY . 5
T = :AI[Q =4 |:4cnsh‘{3rgfﬂ+( }Ihl) 5i1ﬂ1‘{ha]] ; (4.60)
We can rewrite R i terms of T as
B+RBY . .
=% ( ljr; ) sinh?(kya). (4.61)

Sinee cosh®(kxa) = 1 + sinh?(ka) we can reduce (4.60) to

1(K+k > ) )
T=|14-= = mh= (k> : 4.62
|: -5-4( i sinh~(fa) ( )

. a2 ) 2
ki +k =( " _) - W (4.63
kik> E(Vy—E) E(Vo—E)

Now since




we can rewrite (4.61) and (4.62) as follows:

< e Y a—
R—Zm‘mﬂl (E Zm[V{}—E]), (464}

-1
/Y
= —_— —./2 - . 4.65
T |:1+4E[VD—E] sinh (h”’ m(Vy E])} (4.65)
or
: SR

= s sinh (;._\/—1 = 5), (4.66)
1 . 3.3 . A £
T_[1+4E{1_E] sink (,:,\/1—5)} ; (4.67)

where 4 = ay/Im Vo/h and e = E/ V.
Ans 5b
It 15 casy to infer the quantum mechanical study from the treatment of the potential step

presented m the previous section. We need only to mention that the wave function will display

an oscillatory pattern in all three regions; its amplitude reduces every tune the particle enters a
new region (see Figure 4.3):

p1(x) = 4B¥ 4 Be7RIX . x <,
w(x) =1 wx)=Ced"¥  De X 0 <x <a, (4.36)
y3(x) = Eefx, x > a,

where by = ‘;‘EJmE/}L?Q and by = %ﬁ'lfzm[E - Vg}ﬂiz. The constants B. C. D. and E can be

obtained in terms of 4 from the boundary conditions: y(x) and dy/dx must be continuous at
x = 0 and x = a. respectively:

duyrq(0 dyra (0
w1(0) = ¥2(0), *’;}; 2 s *‘”df 4 (437)
dyo(a) _ dy3la)

wala) = ysla), = = (4.38)




These equations yield
A+ B=C+ D, iki(A — B) =iky(C — D), (4.39)
Ce™® 4 Do = g ik, (Cef“'iﬂ " De‘“‘?") = ik E&ME, (4.40)

Solving for E. we obtain

E

4?(1;{3145?_&1"[{;{1 + kz_}:-' g—ﬂ"?fi' e {k] - II(E}Z Eikza]—I

; : o
= dkiky AR [4k1kgco=_.[kga}—2i (kﬁﬁq’) sin{kga}:| . @4

The transmission coefficient 1s thus given by

3l _1
ki E? 1(H-B\ .3
T = m— 1+E( Jif]_kg sin“(kya)
g
Vs af ) o e
= l—l—msul (a\; 2mVo/h-\/ E/ Vo—l)} ; {4.42)

because

7 7% 2 )
kK — k5 Vo .
( s ) S EE—To) (4.43)

Using the notation 4 = av“flm Vo/h% and & = E/ V. we can rewrite T as
1 ; i
¥ = [1 4 sin?(e— 1)} . (4.44)
de(e—1)
Similarly, we can show that
2 sin’ (Ay/z = 1) [1 , k- r
" de(e— 1)+ sin(Jn/z — 1) - Sillj{}.\;‘ﬂ‘ =2

Ans 6a:Refer your book
Ans 6b: use the formula:

BE = (Zm,)c* + (Nm,)c* — M.

(4.45)

Binding energy per nucleon= BE/A
Ans 6¢: Do it yourself
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Ans 7c: Beta particles (not a ray) can be ejected from a nucleus because they are
from the decay of a neutron into a proton. The beta particle itself is not an

electron but a positron, in other words an antimatter electron.
check full explanation in the study material



