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Q. 1.  (a) Define extensive and intensive variables with the help of examples.
Explain how first leads to the concept of internal energy and law of
thermodynamics. (8)

Sol. Extensive variables : If the value of a thermodynamic variable depends
on the size of the system, then it is said to be an extensive quantity. The values of
extensive quantities depend on the number of atoms (mols) that are present in the
system. Examples – Volume, strain, entropy etc.

Intensive variables  : If the value of a thermodynamic variable does not depend
on the size of the system, then it is said to be an intensive quantity. The values of
intensive quantities do not depend on the number of atoms (mols) that are present
in the system. Examples – Temperature, pressure, magnetic field intensity etc.

Internal energy and First law of thermodynamics
Internal energy is the sum of molecular kinetic and potential energies in the

frame of reference relative to which the centre of mass of the system is at rest.
Thus, it includes only the (disordered) energy associated with the random motion
of molecules of the system. We denote the internal energy of a system by U. Internal
energy U of a system is an example of a thermodynamic ‘state variable’ – its value
depends only on the given state of the system, not on history i.e. not on the ‘path’
taken to arrive at that state.

The internal energy U of a system can change through two modes of energy
transfer: heat and work.

Let Q  = Heat supplied to the system by the surroundings
W = Work done by the system on the surroundings
U = Change in internal energy of the system

The general principle of conservation of energy then implies that Q =
U + W (1) i.e. the energy (Q) supplied to the system goes in partly to increase
the internal energy of the system (U) and the rest in work on the environment
(W). Equation (1) is known as the First Law of Thermodynamics. It is simply the
general law of conservation of energy applied to any system in which the energy
transfer from or to the surroundings is taken into account.

Attempt any four questions of this questions paper
Each question is of 18.75 marks.
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(b) Draw P – V diagrams representing isothermal and adiabatic process of an
ideal gas. Why is P – V curve for adiabatic process steeper than that for isothermal
process. (5)

Sol. P – V Diagram representing isothermal and adiabatic of an ideal gas
Adiabatic process : PV = constant
 VdP + PV – 1 dV = 0


P
V

d
d

 =
P–

V

Isothermal process : PV = constant
 PdV + VdP = 0


P
V

d
d

 =
P

– V

Now, Y > 1


adiabatic

P
V

d
d  >

isotherm

P
V

d
d

 
P
V

d
d

 is the slope of the P – V curve.

 The P – V curve for an adiabatic process is steeper than that for an isothermal
process.

(c) Deduce the latent heat question of Clausis C2 – C1 = (dL/dT) – (L/T) where
C1 and C3 represent the specific heat of a liquid and saturated vapour and L is the
latent heat of the vapour. (5.75)

Sol. Latent heat question of Clausius

dS =
Q
T

The change of entropy dS is given by the relation
For a change of state from liquid to vapour at constant temperature T = The

boiling points of the liquid, Q = L, the latent heat of vaporisation. If S1 is the
entropy in the liquid state and S2 in the vapour state, then

dS = S2 – S1

 S2 – S1 =
L
T

...(1)

Differentiating equation (1) with respect to T, we have

isothermal

adiabatic

volume

pr
es

su
re

(P1, V1)
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2 1S S
–

T T
d d
d d

 = 2
L 1 L

T TT
d
d

or 2 1S S
T – T

T T
d d
d d

 =
L L
T T

d
d

Now 2S
T

T
d
d

 = c2 specific heat in the vapour state

and 1S
T

T
d
d

 = c1 specific heat in the liquid state

 c2 – c1 =
L L–
T T
d
d

This is known as Clausius Latent heat equation.
Q. 2. (a) State Carnot's theorem and show that it is necessary consequence of

second law of thermodynamics. Using Carnot theorem, prove Clausis inequality.
(12)

Sol. Carnot theorem state that of all heat engines working between the same
(constant) temperature, the reversible Carnot engine has the maximum efficiency.
Let us consider an irreversible engine (I) and a reversible engine (R) operating
between the same reservoirs which are at temperatures T1 and T2. Suppose that
the irreversible engine is more efficient than a reversible engine. Then we can
write

I > R

Let us consider an irreversible cycle engine working between temperatures T1
and T2. If a reversible engine were operating between the same temperature, it
follows from Carnot theorem (Sec. 6.4.1), that

irr < rev

or 1 2

1

Q – Q

Q

irr irr

irr  <
1 2

1

Q – Q

Q

rev rev

rev

This expression can be rearranged as

2

1

Q

Q

irr

irr  > 2 2

11

Q T
TQ

rev

rev

or 2

2

Q
T

irr

 > 1

1

Q
T

irr
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Consequently, for an irreversible cycle engine, we must have

Q
Tirr
  = 1 2

1 2

Q Q
– 0

T T

irr irr
...(1)

In words, this inequality implies that the value of the cyclic integral 
Q
Tirr


will be less than zero for an irreversible process. If we make the engine more an
more irreversible, the integral in equation (1) will progressively become smaller
and smaller. Thus, for all irreversible heat engine cycles, we can write

Q
Tirr
  < 0 ...(2)

On combining equation (2), we find that for heat engines we can, it general,
write

Q
Tirr
  < 0 ...(3)

This relation is known as the Clausius ineqality. Note that the equality holds
only for reversible heat engines.

(b) There are two Carnot engines A and B operating in two different
temperature regions. For Engine A the temperatures of the two reservoirs are
200°C and 150°C. For engine B the temperature of the reservoirs are 300°C and
250°C. Which engine has lesser efficiency? (6.75)

Sol. For Engine A For Engine B
T1 = 200°C T1 = 300°C
T2 = 150°C T2 = 250°C

efficiency of engine A efficiency of engine B

A = 2

1

T
1 –

T
B = 2

1

T
1 –

T

=
1501 –
200

=
2501 –
300

= 0.25 = 0.166
A = 25% B = 16.6%

 Efficiency of engine B in lesser than engine A B < A.
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Q. 3. (a) Define the princple of increase of entropy. Explain the second law of
thermodynamics in terms of entropy? (6.75)

Sol. Refer question no. 14 [Page no. 16] and question no. 17 [Page no. 19] of
chapter 1.

(b) Using the Maxwell's law of distribution of molecular speed; derive
expression for : (12)

(i) Average speed
(ii) Most probable speed
(iii) Root mean square speed
Sol. (i) Average speed using maxwell's law of distribution of molecular speed

  Average velocity (or speed) = 0 0

0

( ) ( )

( )

n d n d

n
n d

But according to M.B distribution of molecular speeds

n() d  =
–3/2 2 2 2–2 3 22 T 44

2 T

m
bkmn e d n b e d

k

where b =
2 T
m
k

  =
2 2–3 3

0

1 4 bnb e d
n

Using the standard integral 
2–3

2
0

1

2
axx e dx

a
 we have

2 2–3 be d  = 4
1

2b

Substituting in (i) we have

Average velocity  = 3
4

4 . 2 T4 1 2 1 8 T T1.59
2

k k kb
b m m mb

.
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(ii) Most probable speed
Most probable speed (velocity). The most probable velocity m.p is which the

number of molecules having that velocity is a maximum.
According to Maxwell-Boltzmann statistics, the number of molecules having

speeds) between  and ( + d) is given by

n() d =
–3/2

22 T4
2 T

m
kmn e d

k

The total number of molecules n = 
0

( )n d

 The proability that a molecule may possess a velocity between  and ( + d)
is given by

p() d=
3/2 2– 22 T( )

4
2 T

m
kn d m e d

n k

=
2 2–3 24 bb e d                  where      b = 

2 T
m
k

Hence, the probability that a molecule may have a velocity lying in the unit

velocity interval 
1–
2

 and 1
2

 around the value  is given by P()

 = 
2 2–3 24 bb e

In order that the probability may be a maximum the expression 
3 2 2– 24 bb e

should also be a maximum.
Hence, the condition for most probable velocity is given by

2 2–3 24 bd b e
d  = 0

or
3 2 2 2 2– –2 24 2 – 2b bb e e b  = 0

or
3 2 2– 2 28 [1 – ]bb e b  = 0       or           1 – 2 b2 = 0
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 2 = 
2
1 1or =

bb
 =

2 Tk
m

Hence m.p = 2 Tk
m

 =
T1.41 k

m
(iii) Root mean square

n() d =
3/2 2– 2 22 3 – 22 T 44

2 T

m
bkmn e d nb e d

k

where b =
2 T
m
k

Mean or average (velocity)2

=
2 2 2 2– –3 4 3 4

0 0

1 4 4. b bnb e d b e d
n

Using the standard integral 
2–4

5
0

3
8

axx e dx
a

 we

2 2– 4

0

be  = 5
3
8 b

Substituting in (i) we have

Mean or average (velocity)2 = 3
5 2

4 3 3 1 3 2 T 3 T
8 2 2

k kb
m mb b

The root mean square velocity r.m.s  is the square root of mean or average
(velocity)2

 r.m.s  =
3 T T1.73k k
m m

(b) Find the change in entropy when I gram of water at 0°C is converted into
steam at 100°C. The specific heat of water is 1 cal/gm °C and latent heat of steam
at 100°C is 540 cal/gm. (6.75)

Sol. I gm of water at 0°C is heated to 100°C

Change in entropy = 2
10

1

T
2.3023 ms log

T
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S = specific heat of water
m = mass of water

 Change in entropy = 3732.3026 1 1 log
273

= 0.312 cal/K
I gm of water at 100°C changes to steam at 100°C

Change in entropy =
Q L
T T

m

L = Latent heat

 Change in entropy =
1 540

1.448 cal/K
(273 100)

Thus, total change in entropy = 0.312 + 1.448
= 1.760 cal/K.

Q. 5. (a) Derive Wein's displacement law and Stefan's law from Planck's
radiation law. (10.75)

Sol.  Wien's displacement law : The wavelength at which maximum in the
curve occurs can be obtained from equation (11.55) using the condition

max

u
 = 0 (11.58)

This leads to
u

 =
– 5

B
8

exp ( / T) – 1
hc

hc k

=

– 6 – 5
B B2

B
2

B

– 5 [exp( / T) – 1] – – exp( / T)
T

8
(exp( / T) – 1)

hchc k hc k
k

hc
hc k

= B
5 2B BB

exp( / T)8 1 5–
(exp ( / T) – 1) (exp( / T) – 1)T

hc khc hc
hc k hc kk

= B
2

BB

exp( / T)5–
(exp( / T) – 1)T

hc khcu
hc kk
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Suppose the value of u is maximum for  = max. Therefore, we equate the right-
hand side of the above expression equal to zero put  = max. This gives

Suppose the value of u is maximum for  = max. Therefore, we equate the right-
hand side of the above expression equal to zero put  = max. This gives

max B
2

max max Bmax B

exp( / T)5–
(exp( / T) – 1)T

hc khc
hc kk  = 0

or
max B

max B max B

exp( / T)
T [exp ( / T) – 1]

hc khc
k hc k  = 5 (11.59)

We will now introduce a new variable by defining x = hc/maxkBT. Then we can
rewrite equation (11.59) in an elegent from :

exp( )
exp( ) – 1

x
x

x  = 5

or x = 5 (1 – e–x) (11.60)
This is a transcendental equation and can be solved graphically or numerically.

However, we expect a root in the neighbourhood of 5. By applying the method of
approximation, the exact value of x is found to be 4.965. Hence, the result is

x  =
max B

4.965
T

hc
k

Hence, maxT  =
B 4.965

hcb
k

(11.61)

This is Wien's displacement law
On substituting for h, c and kB, we get

maxT  = 2.897 × 10–6 mK (11.62)
Stefan's law : The total energy density for photons of all wavelength

(frequencies) is obtained by integrating equation (11.57). This gives

u(T) = 5
0 0 B

8
[exp( / T) – 1]

du d hc
hc k

(11.63)

To evaluate this integral, we introduce a change of variable by defining

x = 
BT

hc
k  so that  = 

BT
hc
k  and d = 2

B
–

T
hc dx

x k
. The limits of integration change
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to – to 0. Using these results in equation (11.63), we get

u(T) =
20

B
5

–

B

–
T

8

[exp ( ) – 1]
T

hc dx
x k

hc
hc x
xk

To absord the negative sign, we change the limits of integration. Hence, we get

u(T) =
4 4 3

B
3 3

0

8 T
exp( ) – 1

k x dx
xc h

This integral is a standard one and has the value  (4) (4) = 4/15. So, the total
energy density at temperature T is given by

u(T) =
5 4

4B
3 3

8
T

15

k

h c

= aT4 (11.64)

where a = 
5 4

– 16 3 –4B
3 3

8
7.56 10 Jm K .

15

k

h c

If we consider the interior of the Sun as consisting of a photon gas at contant
temperature 3 × 106 K, we find that its energy density is equal to

u = (7.56 × 10–14 Jm–3 K–4) × (3 × 106 K)4

= 6.1 × 1010 Jm–3

The volume of the sun is nearly equal to 1.4 × 1027 m3. So, the total energy of
photons inside the sun is

E = uV = 8.6 × 1037J
If there were a small opening in a cavity, photons will effuse through it. The net

rate of flow of radiation per unit area of the opening is given by

R =
5 4

4B
3 2

21 T
4 15

k
u c

h c

or R = T4

where  = 
5 4

– 8 – 2 – 4 –1B
3 2

2
5.67 10 Jm K

15

k
s

h c  is Stefan-Boltzmann constant.
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(b) Explain the ultraviolet catastrophe according to Rayleigh-Jeans distribution
law. (5)

Sol. Ultraviolet Catastrophe : Before Planck's hypothesis, physicists tried to
describe the spectral radiance of electromagnetic radiation by classical physics.
The approximation based on classical physics is known as the Rayleigh-Jeans law.

Similarly, as for Planck's law, the Rayleigh-Jeans law gives the spectral radiance
of a body as a function of frequency v at absolute temperature T:

B(T) =
2

B
2

2 Tk

c

where
• B(t T) is the spectral radiance (the power per unit solid angle and unit of

area normal to the propagation) density of frequency radiation per unit
frequency at thermal equilibrium at temperature T

• c is the speed of light in a vacuum
• kg is the Boltzmann constant
• is the frequency of the electromagnetic radiation
• T is the absolute temperature of the body

Classical theory (5000 K)
5000 K

4000 K

3000 K

  0       0.5       1        1.5      2         2.5       3

Wavelength

14

12

10

8

6

4

2

0

The electromagnetic spectrum predicted by this formula agrees with
experimental results at low frequencies (large wavelengths) but strongly disagrees
at high frequencies (short wavelengths). This inconsistency between observations
and the predictions of classical physics is commonly know as the ultraviolet
catestrophe or Rayleigh-Jeans catastrophe. By calculating the total amount of
radiant energy (i.e., the sum of emissions in all frequency ranges), it can be shown
that a blackbody, in this case, would release an infinite amount of energy, which is
in contradiction with the law of conservation of energy.
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(c) A body at 1500 K emits maximum energy of wavelength 2000nm. If the sun
emits maximum energy of wavelength 550 nm, what would be the temperature of
the sun? (3)

Sol. According to wien's displacement law
m T = constant

or m1 T1 = m2 T2

Given m1 = 2000 nm = 2000 × 10–9m
T1 = 1500k
m2 = 550 nm = 550 × 10–9m
T2 = ?

 2000 × 10–9 × 1500 = 550 × 10–9 × T2

T2 =
2000 1500 5454.54K
550

Q. 6. (a) Define and explain the terms Macrostate and Microstate with the help
of an example.

Sol. Refer Q. 2. [Page No. 98].
(b) What is meant by the term thermodynamic probability of macrostate? How

it is related to probability of occurrence of that state. How does it differ from
mathematical probability? (8.75)

Sol. Refer Q. 4. [Page No. 99].
(c) 4 molecules are to be distributed in 2 cells. Find possible no. of macrostates

and corresponding no. of microstates. (4)
Sol. Number of particles n = 4
Number of macrostate = n + 1 = 4 + 1 = 5
Number of microstates = 2n = 16.

R
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