Name of Paper : Mathematical Physics-III

Name of the Course: B.Sc. (Hons.) Physics

: IV Semester

Duration : 3 Hours

2022 **Maximum Marks** : 75

> Attempt five questions in all. Question No. 1 compulsory.

Q. 1. Attempt any five parts:

 $(5 \times 3 = 15)$

- (a) Find the cube root of z = 1 + i and locate them in the plane.
- (b) Show that $u(x, y) = x^2 y^2$ is a harmonic function in the whole complex plane, find its harmonic conjugate, v(x, y).
- (c) "If a complex function f(z) is analystic in a domain D and |f(z)|= Const. K in D, then show that f(x) is also constant in D.
- (d) Show that the Laplace Transform of Dirac delta function is 1, i.e., $L\{\delta(t)\} = 1.$
 - (e) If Laplace Transform of a function $L\{f(t)\} = F(s)$ show that

$$L\{t^n f(t)\} = (-1)^n F^{(n)}(s),$$

where $F^{(n)}$ represent *n*-th derivative of F(s).

- (f) If Fourier Transform of f(x) is $F(\omega)$, find Fourier Transform of f(x) cos ax, where a > 0.
 - (g) Evaluate the following integrals

$$(i) \int_0^\infty e^{3t} \delta(t-4) dt$$

$$(i) \int_0^\infty e^{3t} \delta(t-4) dt$$

$$(ii) \int_0^\infty \sin 2t \, \delta(t-\pi/4) dt$$

Q. 2. (a) Find all values of
$$\sin^{-1} 2$$
. (5)

- (b) Expand $f(z) e^{z(z-2)}$ in the Laurent series about z=2 and determine the region of convergence of this series. Also classify the singularity. (6)
 - (c) Evaluate

$$\oint_c \frac{z}{z^2 + 9} dz, \text{ where } C: |z - 2i| = 4$$

Q. 3. Using Contour Integeration, solve any two of the followings:

$$x^{4} + 1$$

$$(b) \int_0^{\pi} \frac{a}{a^2 + \sin^2 \theta} d\theta \qquad a > 0$$

(c)
$$\int_0^x \frac{\cos x \, dx}{(x^2 + a^2)(x^2 + b^2)} \qquad a \& b > 0$$

$$(d) \int_0^\infty \frac{\sin^2 x}{r^2} dx$$

Q. 4. (a) Obtain Fourier Integral representation of the function

$$f(x) = \begin{cases} 0 & x < 0 \\ a & 0 \le x \le 3 \\ 0 & x > 3 \end{cases}$$

(b) Find the Fourier Transform of the function

$$f(x) = \frac{x}{x^2 + 1}$$

(c) Find Fourier sine transform of e–mx, m > 0 and hence evaluate the integeral

$$\int_0^\infty \frac{\omega \sin \omega x}{a^2 + \omega^2} d\omega$$

Q. 5. (a) For a periodic function f(t) having periodicity T, such that f(t + T) = f(t), show that the Laplace Transform is given by

L{
$$f(t)$$
} = $\frac{\int_0^T e^{-st} f(t) dt}{1 - e^{sT}}$.

(*b*) If a function is piece-wise continuous on $0 < t \le T$ and is of exponential order for t > T then show that

$$\lim_{s \to \infty} \mathbb{L}\{f(t)\} = \lim_{s \to \infty} F(s) = 0,$$

and hence further show that

where F(s) represents the Laplace Transform of f(t).

Q. 6. (a) Plot the given function

$$f(x) = \begin{cases} 1 & |x| < 2 \\ 0 & |x| > 2 \end{cases}$$

Finding its Fourier Transform, F(s), plot it.

- (*b*) Solve the differential equation y''(t) + 4y(t) = 9t with initial condition y(0) = 0 and y'(0) = 7.
- **Q. 7.** (a) Show that the Dirac delta function can be expressed as the derivative of Heaviside's unit step function.
 - (b) For the Dirac delta function $\delta(x)$, prove that

$$\delta(x^2 - a^2) = \frac{1}{2|a|} \left[\delta(x + |a|) + \delta(x - a) \right].$$

- (*c*) If a continuous function f(t) is an even function, then show that its Fourier Transform $F(\omega)$ will also be an even function.
 - Q. 8. (a) Find the Fourier Transform of the function

$$f(x) = e^{-a |x|}, \qquad a > 0$$

and hence show that

$$\int_{-\infty}^{\infty} \frac{e^{-ikx}}{(a^2 + k^2)} dk = \frac{\pi}{\alpha} e^{-a|x|}$$

(b) For a function

$$h(t) = \begin{cases} e^{-xt}g(t) & t > 0\\ 0 & t < 0 \end{cases}$$

show that $F\{h(t)\} = L\{g(t).$

(c) For the equation $z^4 - 3z^2 + 1 = 0$, find the sum of its roots.