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Elementary Band Theory

6

Syllabus: Kronig Penny model. Band Gap. Conductor, Semiconductor (P
and N type) and insulator. Conductivity of Semiconductor, mobility, Hall
Effect.

Q.1. Discuss the Kronig-Penny model for a linear lattice. How does it
lead to the formation of energy band s in solids? Find energy of electron
with periodic potential under the cases

(I)  Potential approaches infinity

(II) Potential approaches Zero

Ans. For the treatment of our problem, a periodic repetition of the potential
well of Fig., i.e., a periodic arrangement of potential wells and potential
barriers, is most probably very close to reality and is also best suited for the
calculation. Such a periodic is shown in Fig. for the one-dimensional case.
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Fig. Ideal periodic square well potential used by Kronig and Penney.

Be calculated by solving Schrodinger equations for the two regions I and
II. The time-independent Schrodinger equation takes the following forms for
the two regions

2 2

2 2

8d m
E

dx h

ψ π
+ ψ = 0; for 0 < I< a

2 2

02 2

8
( )

d m
E V

dx h

ψ π
+ − ψ = 0; for  – h < x < 0

 Using Bloch’s function then solution can be written as:

( )xψ = ikx
ku e

(110)
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For E < V
0
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ψ
+ α ψ = 0; for 0 < x < a

and 2α = 
2
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 Using Bluch, solution is;

( )xψ = ikx
kU e

 On differentiating this eqn two times, and substituting we get,

2
2 21 1

12
2 ( )

d U dU
ik k U

dxdx
+ + α −  = 0 ...(A)

 
2

2 22 2
22

2 ( )
d U dU

ik k U
dxdx

+ + β − = 0 ...(B)

The U
1 

and U
2 
 are the values of U

k 
 in 0 < x < a and – b < x < 0 regions,

respectively.

Solution of A is of the term

U
1

= mxe

On taking  double derivative & substituting in we get the solution.

m = ik i− ± α  ⇒ m
1
 = ( )ik i i k− + α = α −

and m
2

= ( )i k− α +

So U
1

= 1 2m x m xAe Be+

Similarly eqn B results in

U
2

= ( ) ( )B ik x B ik xCe De− ++

Using boundary continuous

1[ ]U x = o = 
1 2

2 0
0 0

[ ] andx
x x

dU dU
U

dx dx
=

= =

   
=      

  

1[ ]x aU = = 
1 2

2[ ] ,x b
x a x b

dU dU
U

dx dx
=−

= =−

   
=      

Using theses we get

(A + B) = (C + D) ...(1)

( ) ( )i k A i k Bα − − α + = ( ) ( )ik C V ik Dβ − − − ...(2)
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( ) ( )i k a i k aAe Beα − α++ = ( ) ( )ik h ik bCe De− β− β++ ...(3)

( ) ( )( ) ( )i k a i k aAi k e Bi k eα− − α+α − − α +  = ( ) ( )( ) ( )i ik b v ik bC ik e D ik eβ− − +β − − β + ...(4)

Eqn. 1, 2, 3 and 4 will have nonvanishing solutions if and only if the determinant
of the coefficients A, B, C and D vanishes. This required that

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 11

( ) ( ) ( )( )

( ) ( ) ( ) ( )

i K a i k a iK b iK b

i k a i k a b iK b iK b

i K iK iKi K

e e e e

i k e i K e iK e iK e

α− − α+ − β− β+

α− − α+ − β− β+

− α − β − − β −α −

α − − α − β − − β −

 = 0

Thus the solution of the determinant (Eqn. 4) is

`

2 2( )
sin sin cos

2
a h b a

β − α
α β α

αβ
  = cos K(a + b) ...(5)

Eqn. (5) is complicated but a simplification is possible. Kronig and Penney

considered the possibility that 0V a remains finite. Such a function is called

delta function. Under these circumstances,

sin and cos 1as 0.h b b h b bβ → β β → →     
Hence Eqn. (26) becomes

2 2( )
sin cos

2
b a a

β − α
β α + α

αβ
 = cosKa

2 2( )β − α = 
2 2 2

0 02 2

8 8 8
( ) [ 2 ]

m m m
V E E V E

h h h

 π π π
− − = −  2  

Since 0V E>> ,

2 2β − α = 
2

02

8
( )

m
V

h

π

Substituting this in the above equation, we get

2
0

2

8
sin cos

2

mV
h a a

h

 π
β α + α  αβ 

 = cos Ka

P = 2
omV ab

h

alllabexperiments.com 



Solid State Physics (CBCS) 113

Where

0
2

sin
cos

mV ab a
a

ah

α 
+ α 

α 
= cos Ka

i.e.,
sin

cos
a

P a
a

α
+ α

α
= cos Ka ...(6)

The term 0V b is called the barrier strength. The term 
0
2

mV b
P

α
=
ℏℏℏℏ

in Eqn.

(6) is sometimes referred as the scattering of the potential barrier. It is a
measure of the strength with which electrons in a crystal are attracted to the
crystal lattice sites. Also

2α = 
2 2 2

2 2

8
,

8

mE
or E

m

π α
=

π

ℏℏℏℏ

ℏℏℏℏ
    

and K = 
2π

λ
...(7)

Eqn. (6) is a condition of the existence of a solution for the electron wave
function.

There are only two variables in Eqn. (6), namely α and K. The right hand
side of Eqn. (6) is bounded since it can only assume values between +1 and –
1. If we plot the left-hand side of this equation against α a, it will be possible
to determine those value of α  (and hence).

Reason for Formation Energy Bands:

 The wave function at the point /K a= ±π do not have traveling instead

standing waves. The standing waves are formed when wave is Bragg reflected;
is direction of travel is opposite to its incident direction and subsequent
reflection reverses the direction again there by producing standing waves
since the wave by itself should be time independent. The two different forms

of standing waves in terms of travelling waves / /andi x a i x ae eπ − π  are.

( )ψ + = / 2cos (real part)i x i x a x
e e

a
π − π π 

+ =  
 

  

( )ψ − = 
/ / 2 sin (imaginary part)i x a i x a x

e e i
a

π − π π 
− =  

 
  

 These two different standing waves ( )ψ +  and ( )ψ − group electron at

different region with different potential energy. This gives raise to the
formation of forbidden energy gap.
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From equation P = 0
2

mV ab

h

 whenV P→ ∞ → ∞����   
and  0 when 0V P→ →����   
Case (i): At one of the extremities, P → ∞

sin aα = 0; or 
2 2

2
2 2

2n mE
a n

a

π
α = ± π⇒ α = =

ℏℏℏℏ
  

on rearranging,
p → α

0

aa

E = 
2 2 2 2 2 2 2 2

2 2 2 22 2 (2 ) 8

n n n

a m a m ma

π π
= =

π

ℏ ℏ ℏ
...(8)

 Here the energy depends on the width of the potential rather than any
other parameter. The energy level of electron in the crystal lattice is discrete
and is similar to the particle in a potential box with an atomic dimension. This
is because with a large value of potential strength barrier the tunneling effect
is explicitly improbable.

Case (ii): When p → 0, with the same equation cos αa = cos Ka = > a = k

Substituting the values 
2K  = 

2
2

2mE
α =

ℏ
on rearranging,

E = 
2

2

2
k

m

 
  
 

ℏ
...(9)

= 
2 2

2 2

2
2

8 2m m

π 
= 

λ π λ

ℏ ℏ

λ here refers to the wave nature of the electron and is equated as de
Broglie’s wavelength

E = 
2 2 2

22 2

P P

m m
=

ℏ

ℏ
...(10)

= 
2 2

21

2 2

m v
mv

m
=
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The energy obtained above corresponds to the completely free particles
p → α

αa

Q.2. what are Conductor, insulators and Semi conductors?

Ans. (a) Metals: Metals are good conductors of electricity. The energy
band structure in case of metals is such that either the valency and conduction
band overlap as in case of zinc [Fig. (a))] or the conduction band is partly
filled as in case of sodium [Fig. (b)]. Even in the former case, it may considered
that conductor has a single energy band which is partly filled and partly
empty.

Thus there are empty levels just above the highest filled level. When an
electric field is applied, the electrons at the top of the filled portion of the
band get accelerated, i.e., gain energy and move into the empty part of the
energy band. These electrons behaves as free electrons and some of them
start moving in a direction opposite to that of electric field. In other words, a
current begins to flow in the solid Hence the metals behave as good
conductors.

Conduction
Band

Valency
Band

Conduction
Band

F
F

Figure: Energy bands in metals (a) conduction and valence bands
overlap each other, (b) partly filled conduction band.

The highest energy level in the conduction band occupied by electrons at
absolute zero temperature is called fermi level (F) and the energy
corresponding to the demi level is called Fermi energy.

(b) Insulators: These are very poor conductors of electricity. In case of
insulators, the valency band is completely filled and the conduction band
completely empty. The energy gap between valency band and conduction
band is very large, e.g., for diamond it is 6 eV, as shown in fig. Therefore, a
very large amount of energy has to be supplied to the electron to move it
from valency band to conduction. When an electric field is applied across
such a solid, electrons in the valency band do not gain such a large amount of
energy so as to jump in to the conduction band. The conduction band,
therefore, continues to remain almost empty. Thus no electron flow takes
place, i.e., no current flows through such a solid. Hence the solid behaves
like an insulator.
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Conduction
Band

Eg  6 eV≃

Conduction
Band

Figure. Energy band in insulators.

At any non-zero temperature, some electrons can be excited to the
conduction band, which is now no longer fully empty. These electrons,
t h e r e f o r e ,  c a n  c o n d u c t  e l e c t r i c i t y  w i t h  a  c o n d u c t i v i t y  p r o p o r t i o n a l  t o  p, which
lis indeed very small.

exp
gE

p
kT

 
∝ − 

 
  

In the expression E
g
 is the energy gap, k is Boltzman’s constant  and T is the,

(c) Semi-conductors: These have conductivity between metals and in
sulators. The energy band structure of a semiconductor is shown in fig. In
this case, the energy gap between valency band and conduction band is small
and is of the order of 1.1 eV in silicon. At absolute zero temperature the
valence band is   completely filled and conduction band is totally empty.
Hence they are insulators at low temperatures.

Conduction
Band

Eg  1.1 eV≃

Conduction
Band

Figure: Energy band in semi-conductors.

At room temperature, some electrons in valency band acquire sufficient
thermal energy to jump over the energy gap E

g
 into the conduction band. In

the conduction band, these electrons are free to move under the influence of
even a small electric field. As mentioned in insulators, the fraction p of electrons

which can be excited to the conduction band is proportional to exp. 
gE

kT

 
− 
 

,

where letters have their usual meanings. As E
g
, in case of semiconductors is

quite small, this fraction is sizeable for semi-conductors. This accounts for
small conductivity of semi-conductors at room temperature. It is important
to note that unlike metal, the resistance of semi-conductors decreases with
the rise in temperature. It is because with rise in temperature more and mor
e electrons jump from valency band into conduction band and therefore,
conductivity of semi-conductor increases.
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Q.3. Discuss about P-N type extrinsic semiconductor.

Ans. The Doping of Semiconductors

The addition of a small percentage of foreign atoms in the regular crystal
lattice of silicon or germanium produces dramatic changes in their electrical
properties, producing n-type and p-type semiconductors.

Pentavalent impurities: Impurity atoms with 5 valence electrons produce
n-type semiconductors by contributing extra electrons.

Antimony
Arsenic
Phosphorous

Boron
Aluminum
Gallium

donor
impurity
Antimony

Boron
acceptor
impurity

Fig. Trivalent impurities

Impurity atoms with 3 valence electrons produce p-type semiconductors
by producing a "hole" or electron deficiency.

N-Type Semiconductor:The addition of pentavalentimpurities such as
antimony, arsenic or phosphorous contributes free electrons, greatly increasing
the conductivity of the intrinsic semiconductor. Phosphorous may be added
by diffusion of phosphine gas (PH

3
).

Donor impurity
contributes
free electrons

N-Type

Antimony
added as
impurity

Conduction

Valence

Fermi
level

Extra
electron
energy
levels

P-Type Semiconductor: The addition of trivalent impurities such as boron,
aluminum or gallium to an intrinsic semiconductor creates deficiencies of
valence electrons, called "holes". It is typical to use B

2
H

6
 diborane gas to diffuse

boron into the silicon material.
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Conduction

Valence

Fermi
level

Extra
electron
energy
levels

P-Type

Acceptor
impurity
creates a
hole

Boron
added as
impurity

Q.4. Define and derive for mobility of semiconductors. Also Discuss
Hall effect.

Ans. Consider a block of semiconductor of length l and area of cross-
section A, as shown in Fig. Let ne and nh be number densities of electrons
and holes respectively. Let us further suppose that a current l flows through
the semiconductor block, when a potential difference V is applied across it.
Since flow of current in a semiconductor is due to the motion of both electrons
and holes, so we have

l = e hl l+ ...(1)

Area = A

V

+

1

Figure. Carrier Mobilities of semi conductors.

where le and lh are current due to motion of electrons and current due to
motion of holes respectively. In terms of number densities ne and nh and
drift velocities v

e
 and v

h
 of electrons and holes, eq. (1) becomes

l = e e h hn Aev n Aev+ ...(2)

 or l = ( )e e h heA n v n v+ ...(3)

Now l = 
V

R

where R is the resistance offered by the semiconductor block to the flow
of current. Therefore, Eq. (3) becomes

V

R
= ( )e e h heA n v n v+ ...(4)
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Now if E is the electric set up across the semiconductor block, then

E = .
V

or V El
l

=  

Substituting this value of V in eq. (4), we get

El

R
= ( ) ( 0e e e eh h h h

E
eA n v n v or e n v n v

RA

l

+ = +  

But 
RA

l
= ρ , the resistivity (specific resistances) of the material of the

conductor, therefore,

E

ρ
= ( )e e h he n v n v+ ...(5)

The above equation can be further modified in terms of an important
quantity called the ‘mobility of the carriers’.

Mobility of carriers, be it of electrons or holes, is defined as the drift
velocity of the carriers per unit electric field. We can, therefore, write the
mobilities of electrons and holes expressed by symbols µ

e
 and µ

h
 as,

eµ  = ande h
h

vv

E E
µ =  ...(6)

Incorporating (6) in (5), we get

1

ρ
= [ ]e e h he n nµ + µ ...(7)

But
1

ρ
= σ ...(8)

where σ  is the conductivity of semiconductor. So, we get

σ = [ ]e e h he n nµ + µ ...(9)

Equation (9) tells us that the conductivity of a semi-conductor depends
upon the mobilities of electrons and holes as well as their number densities.
Now, as far as the increase in temperature is concerned, the mobilities µe and
µh are not much affected by it. We, therefore, note that rise in conductivity
with rise in temperature of a semi-conductor is chiefly due to increase in
carrier concentrations.

Hall’s Effect: If a metal or a semi-conductor carrying current I is placed in
a magnetic field acting at right angle to the direction of flow of current, an
electric field is set up at right angle to both the directions of the current as
well as that of the magnetic field. This phenomenon is known as Hall’s effect.

It was discovered by E.H. Hall. The existence of the transverse e.m.f. can
be shown by the following experiment. Consider a cuboid strip OAB’ CDEFG
of metal or semi-conductor with its three edges parallel to the three axes OX,
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OY and OZ as shown. Let the strip be provided with terminals T
1
 and T

2
 on

opposite faces parallel to Z-axis. Let a current I be passed through the strip
along +ve X-direction. If we connect, the terminals T

1
 and T

2
 to a sensitive

galvanometer, no deflection will be seen. On applying magnetic field along
+ve Z-direction, the galvanometer shows some deflection. On reversing the
direction to the magnetic field, the direction of current in the galvanometer
is also reversed. This indicates, on applying magnetic field, a potential
difference exists between the terminals T

1
 and T

2
, which were at same

potential, when the magnetic field was not applied. This transverse e.m.f.,
set up is known as Hall’s Voltage or Hall potential difference.

Y

G

F

A

Z
B

B′T2

F

T1

 C  X

 D

 E
Vd –

F

Figure. Hall’s Effect

Theory: Let us suppose the strip is metallic and the charge carrier are
electrons, moving along – ve X-direction. A charge (q) moving at right angle

to the magnetic field experiences a force of magnitude qvB [ ( )]F q v B= ×
� ��

. Thus

a force F = dev B− will act on the electron, where e is the charge, v
d
 is the drift

velocity and B is the magnitude of magnetic field. Applying Flaming’s left
hand rule, we find the force is directed downwards and thus electron will
move towards face OAB’C. The same will be true for all other free electrons.
This will make T1 at positive and T2 at negative potential. This process will
continue, till the negative potential of T2 stops the further movement of
electrons. At this stage, the forces acting on the electron due to two fields are
equal and opposite and

teE = dev B ...(10)

or tE = dv B

If d is the depth of the strip, measured parallel to Y-axis, the transverse

electric field tE is given by

tE = HV

d
...(11)

when V
H
 is Hall’s potential difference.
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