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Syllabus: Polarization Local Electric Field at an Atom. Depolarization Field.
Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical
Theory of Electric Polarizability. Normal and Anomalous Dispersion.
Cauchy and Sellmeir relations. Langevin - Debye equation. Complex
Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations,
Plasma Frequency, Plasmons, TO modes.

Q.1. Obtain an expression for local electric field inside a dielectric with
cubic symmetry.

Ans. Internal field or Local field in solids: Consider a dielectric material
and is subjected to external field of intensity E

1
. The charges are induced on

the dielectric plate and the induced electric field intensity is taken as E
2
. Let

E
3
 be the field at the center of the material. E

4
 be the induced field due to the

charges on the spherical cavity. The total internal field of the material is

E
i
= 1 2 3 4E E E E+ + +

Now consider the Electric field intensity applied E1

E
1

= 
0

D
∈

D = E P∈+

Substituting the Electric flux density D in E1, we get

E
1

= 0

0

E P∈ +

∈

E
1

= 
0

P
E +

∈

E
2
 is the Electric field intensity due to induced or polarized charges

E
2

= 
0

D−

∈

Here the charge is induced due to the induced field so the electric flux
density D changes to the electric polarization P

(93)
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E
2

= 
0

P−

∈

Since we have considered that the specimen is non polar dielectric material,
at the center of the specimen the dipole moment is zero and hence the electric
field intensity at the center is zero due to symmetric structure.

E
3

= 0

Now consider a circle from the center of the dielectric material. In order
to calculate the electric field intensity E4 on the surface of spherical cavity,
the polarization should be calculated by resolving it into two components, as
shown in the following figure.

As we know the polarization P is the induced charge per unit area

p = 
q
A

Here the polarization changes to its component we have divide in the
figure and the charge changes to dq where the area of cross section changes
to ds.

cosp θ = 
dq
ds

dq = cosp dsθ

Now this equation can be solved by finding out the values of the charge
dq in the surface are ds. We know the Electric field intensity E.

E = 2
0

1

4 rπ∈
2

q

r

Multiplying with the cosine angle on both the sides we get

4 cosE θ = 2
0

cos1

4

q

r

θ
×

π∈

Now by applying all the present condition for the above equation we

4E = 2
0

cos1

4

dq

r

θ
×

π∈

Now substituting the charge dq in the above equation we get

4E = 2
0

1 cos cos

4

d ds
r

θ × θ
×

π∈

In the above equation ds should be calculated. Consider the spherical cavity
and mark the points R and Q on the sphere of radius 'r' as shown in the above
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figure and drop vertical line from Q and mark it as S. By applying the surface
area of a sphere formula we get,

ds = 2 ( ) ( )RQ QSπ× ×

We know that angle of the sector θ = 
length of the arc( )

radius of the circle( )

l
r

dθ = 
RQ

r

RQ = rdθ.

Now consider the right angled triangle OQS from th

sin θ = 
QS
OQ

QS = r sin θ

Now substituting the values RQ and QS  in the surface area we get,

ds = 2 ( )( sin )rd rπ θ θ

ds = 22 sinr dπ θ θ

Now substituting all the values in the electric field intensity on the spherical
cavity E4 we get,

E
4

= 2
0

1 cos cos

4

P ds
r

θ × θ
×

π∈

E
4

= 
2

2
0

1 cos
2 sin cos

4

P
r d

r
θ

× × π θ θ θ
π∈

E
4

= 2

0

sin cos
2

P
dθ θ θ

∈

Integrating with in the limits 0 to π

E
4

= 
2

0
0

sin cos
2

P
d

π
θ θ θ

∈∫

E
4

= 
2

0
0

sin cos
2

P
d

π
θ θ θ

∈ ∫

On solving the integration we get,

E
4

= 
0

2

2 3

P  
×  

∈  
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E
4

= 
03

P
∈

So the total electric field

E
i
= 1 2 3 4E E E E+ + +

E
i
= 

0 0 0

0
3

P P P
E = − + +

∈ ∈ ∈

Hence the Internal field obtained is

E
i
= 

03

P
E +

∈

Q.2. Derive Claussius Mossotti equation?

Ans. Clausius Mossotti's equation gives the relation between the dielectric
constant and the ionic polarizability of atoms in dielectric material. If there
are N number of atoms, the dipole moment per unit volume which is called
Polarization is given by,

P = iNaE

we know internal field

E
i
= 

0

P
E
 

+ 
3∈ 

From above equations

P = 
0

P
E
 

+ 
3∈ 

P = 0
0

(3 )
3

eNa
E P∈ +

∈

03
eNa

∈
= 

0(3 )

P
E P∈ +

we know polarization from the relation between polarization and dielectric
constant

P = 0( 1)rE∈ ∈ −

from the above two equations we get,

03
eNa

∈
= 0

0 0

( 1)

3 ( 1)
r

r

E
E E

∈ ∈ −

∈ + ∈ ∈ −
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03
eNa

∈
= 0

0

( 1)

( 2)
r

r

E
E

∈ ∈ −

∈ ∈ +

03
eNa

∈
= 

( 1)

( 2)
r

r

∈ −

∈ +

Q.3. What is Electric polarizability?

Ans. Electric polarizability is the relative tendency of a charge distribution,
like the electron cloud of an atom or molecule, and consequently of any
material body, to have its charges displaced by any external electric field,
which in the uniform case is applied typically by a charged parallel-plate
capacitor. The polarizability  in isotropic media is defined as the ratio of the
induced dipole moment of an atom to the electric field  that produces this
dipole moment. P = α E

Polarizability has the SI units of C·m2·V–1 = A2·s4·kg–1 while its cgs unit is
cm3. Usually it is expressed in cgs units as a so-called polarizability volume,
sometimes expressed in Å3 = 10–24 cm3

The polarizability of individual particles is related to the average electric
susceptibility of the medium by the Clausius-Mossotti relation. For example,
an electric field in the x-direction can only produce an x component in P and
if that same electric field were applied in the y-direction the induced
polarization would be the same in magnitude but appear in the y component
of P.

Q.4. What is Electric susceptibility?

Ans. It is a dimensionless proportionality constant that indicates the degree
of polarization of a dielectric material in response to an applied electric field.

P = 0 eE∈ χ

Where P is polarization density, eχ  is electric susceptibility, E is electric

field.

The greater the electric susceptibility, the greater the ability of a material
to polarize in response to the field, and thereby reduce the total electric field
inside the material (and store energy). It is in this way that the electric
susceptibility influences the electric permittivity of the material and thus
influences many other phenomena in that medium, from the capacitance of
capacitors to the speed of light.

Q.5. Make difference between Normal and anomalous dispersion.

Ans. When a white light (eg. Sunlight, or light from an incandescent lamp)
is passed through a prism we observe colour separation. Light being
electromagnetic oscillations, the different colours have different wavelengths
and different frequencies in vacuum for all of them move with the same
speed c. Our eyes sense (map) different wavelengths of visible spectrum with
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different colours. The separation happens because the different wavelengths
have different refractive indices. Whenever light enters a dielectric medium
this separation happens and the phenomenon is known as dispersion. In simple
term it the variation of refractive index with the wavelength. In other words
the variation of the frequency with the wavelength in a medium is dispersion.
Cauchy studied dispersion and gave a formula which described the dispersion
in the visible range quite well. The following formula is known as Cauchy's
dispersion formula

n(λ) = A + B λ2 + 2 + C /λ4 , ...(1)

where A, B and C are constants which depend on the medium.
Experimentally the constants can be determined be measuring the refractive
index for three wavelengths. In usual condition the first two terms would
suffice to give an accurate value of n. The derivative of the refractive index is
given by

dn/dλ = – B/λ3 ...(2)

to a good accuracy. Since A and B both are positive the refractive index
decreases increasing the wavelength.

Anomalous Dispersion

For material transparent to visible region Cauchy's formula works very
well but if one further increases the wavelength say to the infrared, one finds
the refractive index suddenly decreases very fast and does not obey the
Cauchy's law. One now approaches the absorption region. Further increasing
the wavelength once again refractive index becomes large. Again the
behaviour is quite similar to the visible region for the increase in wavelength.
If the range is increased further one again observes another absorption band
as shown in the figure.1 below. The pattern may repeat further as shown,
giving many absorption bands. This dispersion is known as anomalous
dispersion.

R
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e
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n
)

Visible Absoption Bands

Wavelength ( )λ

A

The first theory of it came from Sellmeier who assumed that all elastically
bound particles in the medium oscillate with a natural frequency ω

0
 which

correspond to a wavelength λ
0
 in the vacuum. Sellmeir, formula gave,

n2 = 1 + Aλ2/( λ2 – λ
0

2 ) ...(3)
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Where A is a constant. If one is away from λ
0
 it can be expanded in powers

of λ
0
/λ and one would get a formula of the Cauchy type.

Q.6. What is basic difference between Cauchy's and Sellmeier equation?

Ans. Cauchy's equation: It is an empirical relationship between the
refractive index and wavelength of light for a particular transparent material.
The most general form of Cauchy's equation is

n(λ) = 
2 4

...,
C D

B + + +
λ λ

where n is the refractive index, λ  is the wavelength, B, C, D, etc., are

coefficients that can be determined for a material by fitting the equation to
measured refractive indices at known wavelengths. The coefficients are usually

quoted for λ  as the vacuum wavelength in micrometers. Usually, it is sufficient

to use a two-term form of the equation:

n( λ ) = 
2

C
B +

λ
,

where the coefficients B and C are determined specifically for this form of
the equation. The theory of light-matter interaction on which Cauchy based
this equation was later found to be incorrect; in particular, the equation is
only valid for regions of normal dispersion in the visible wavelength region.
In the infrared, the equation becomes inaccurate, and it cannot represent
regions of anomalous dispersion, despite this, its mathematical simplicity
makes it useful in some applications.

The Sellmeier equation is a later development of Cauchy's work that
handles anomalously dispersive regions, and more accurately models a
material's refractive index across the ultraviolet, visible, and infrared spectrum.

Sellmeier equation: It is an empirical relationship between refractive index
and wavelength for a particular transparent medium. The equation is used to
determine the dispersion of light in the medium. The usual form of the equation
for glasses is

2( )n λ = 
2 2 2

2 2 3
2 2 2

1 2 3

1 ,
B B B

C C C
λ λ λ

+ + +
λ − λ − λ −

where n is the refractive index, λ  is the wavelength, and B1,2,3 and C
1,2,3

are experimentally determined Sellmeier coefficients. These coefficients are

usually quoted for λ  in micrometers. Note that this λ  is the vacuum

wavelength, not that in the material itself, which is λ /n. A different form of

the equation is sometimes used for certain types of materials, e.g. crystals.

For common optical glasses, the refractive index calculated with the three-
term Sellmeier equation deviates from the actual refractive index by less than
5×10–6 over the wavelengths' range of 365 nm to 2.3 µm, which is of the order
of the homogeneity of a glass sample.
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Q.7. What is Langevin-Debye formula?

Ans. A formula for the polarizability of a dielectric material or the
paramagnetic susceptibility of a magnetic material, in which these quantities
are the sum of a temperature independent contribution and a contribution
arising from the partial orientation of permanent electric or magnetic dipole
moments which varies inversely with the temperature. Also known as
Langevin-Debye law.

 Although the dielectric materials are classified in different groups based
in the their mode of polarization, if a material can experience all forms of
polarization, then its total polarizability can be given as the sum of electronic,
ionic, and orientation polarizability, i.e.

∴ α = 
22

3
0 2

0

1 1
4

3
ori

ionic orielec
e

R
M m kw

µ 
α + α + α = π∈ + + +  

This is called Langevin-debye equation for total polarizability in dielectrics.

Here the contribution due to space charge polarization is not considered
because it is almost negligible in most common dielectrics. In the above
equations, first two terms on the right hand side are the functions of molecular
structure of the dielectronic material which are usually independent of
temperature. Due to this reason, they are also known as deformation
polarizability.

Q.8. Discuss about complex dielectric constant.

Ans. It is used to describe the dielectric constant during a periodic variation
of the electric field, where the field variation is described by a sine-shaped
waveform. It is written in the form ε = ε

1
 + iε

2

Where the real part, ε
1
, is the permittivity component quantifying the stored

energy (i.e. the part directly proportional to the field amplitude) and the
imaginary part, ε

2
 is the dielectric loss factor, which describes the part of the

electric energy that is lost through movement of molecules/ions as a result of
the continually changing field (the contribution from this component is
proportional to the rate of the electric field change, or the first derivative of
the electrical field function). This component also gives rise to a phase
difference between the field function and the resulting polarization. Without
this component both would be perfectly in phase. Both components depend
on the frequency of the field variation.

Q.9. What is Plasma Frequency ,correlate between plasma and Plasmons?

Ans. Plasma oscillations: Also known as Languor waves (after Irving
Langmuir), are rapid oscillations of the electron density in conducting media
such as plasmas or metals in the ultraviolet region. The oscillations can be
described as an instability in the dielectric function of a free electron gas. The
frequency only depends weakly on the wavelength of the oscillation. The
quasiparticle resulting from the quantization of these oscillations is the plasmon.
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Consider an electrically neutral plasma in equilibrium, consisting of a gas of
positively charged ions and negatively charged electrons. If one displaces by
a tiny amount an electron or a group of electrons with respect to the ions, the
Coulomb force pulls the electrons back, acting as a restoring force. If the
thermal motion of the electrons is ignored, it is possible to show that the
charge density oscillates at the plasma frequency

ω
pe

= 
2

0

, [rad/ ](  units),
*
en e

s SI
m ∈

 

ω
pe

= 
24

, (  units)
*
en e

cgs
m
π  

where n
e
 is the number density of electrons, e is the electric charge, m* is

the effective mass of the electron, and ?0 is the permittivity of free space.
Note that the above formula is derived under the approximation that the ion
mass is infinite. This is generally a good approximation, as the electrons are
so much lighter than ions. (This expression must be modified in the case of
electron-positron plasmas, often encountered in astrophysics). Since the
frequency is independent of the wavelength, these oscillations have an infinite
phase velocity and zero group velocity.

Plasma Frequency : is the most fundamental time-scale in plasma physics.
Clearly, there is a different plasma frequency for each species. However, the
relatively fast electron frequency is, by far, the most important, and references
to ``the plasma frequency'' in text-books invariably mean the electron plasma
frequency.

2
pω = 

2

0

,
e
m

η

∈

It is easily seen that pω   corresponds to the typical electrostatic oscillation

frequency of a given species in response to a small charge separation. For
instance, consider a one-dimensional situation in which a slab consisting
entirely of one charge species is displaced from its quasi-neutral position by

an infinitesimal distance δχ  . The resulting charge density which develops

on the leading face of the slab is eσ = ηδχ . An equal and opposite charge

density develops on the opposite face. The χ  -directed electric field generated

inside the slab is of magnitude 0 0/ /xE en= −σ ∈ = − δχ ∈  . Thus, Newton's law

applied to an individual particle inside the slab yields.

2

2

md
dt

δχ
= 2 ,x peE m= − ω δχ
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Note that plasma oscillations will only be observed if the plasma system is

studied over time periods τ  longer than the plasma period 1/p pτ ≡ ω  , and if

external actions change the system at a rate no faster than  . In the opposite
case, one is clearly studying something other than plasma physics (e.g., nuclear
reactions), and the system cannot not usefully be considered to be a plasma.

Likewise, observations over length-scales L shorter than the distance t pv τ

traveled by a typical plasma particle during a plasma period will also not
detect plasma behaviour. In this case, particles will exit the system before
completing a plasma oscillation. This distance, which is the spatial equivalent

to pτ , is called the Debye length, and takes the form

1/D pT m −λ ≡ ω

Note that Dλ = 0
2

T
ne
∈

is independent of mass, and therefore generally comparable for different
species.

Clearly, our idealized system can only usefully be considered to be a plasma
provided that

 1,D

L
λ

<<

and 1,
pτ

<<
τ

Here, τ  and L represent the typical time-scale and length-scale of the process
under investigation.

Plasma: It is a state of matter in which an ionized gaseous substance
becomes highly electrically conductive to the point that long-range electric
and magnetic fields dominate the behavior of the matter. This state can be
contrasted with the other states: solid, liquid, and gas. Unlike these other
states of matter, plasma mostly does not naturally exist on the Earth's surface
under normal conditions, and must be artificially generated from neutral
gases. Plasma is an electrically neutral medium of unbound positive and
negative particles (i.e. the overall charge of a plasma is roughly zero). Although
these particles are unbound, they are not 'free' in the sense of not experiencing
forces. Moving charged particles generate an electric current within a magnetic
field, and any movement of a charged plasma particle affects and is affected
by the fields created by the other charges.

A plasmon is a quantum of plasma oscillation. Just as light (an optical
oscillation) consists of photons, the plasma oscillation consists of plasmons.
The plasmon can be considered as a quasiparticle since it arises from the
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quantization of plasma oscillations, just like phonons are quantizations of
mechanical vibrations. Thus, plasmons are collective (a discrete number)
oscillations of the free electron gas density. For example, at optical frequencies,
plasmons can couple with a photon to create another quasiparticle called a
plasmon polarizing. Plasmons can be described in the classical picture as an
oscillation of electron density with respect to the fixed positive ions in a

metal.

���
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