Free Study Material
from
All Lab Experlments

Y Lab“\ \
| ETerlments

! W &

B.Sc. => Solid-State Physics

Chapter -
Elementary Lattice Dynamics

Support us by Donating
at the link “DONATIONS” given on the Main Menu

Even the smallest contribution of you
will Help us keep Running




Elementary Lattice Dynamics

alllabexperiments.com Support by Donating

Syllabus: Linear Monoatomic and Diatomic Chains. Acoustical and Optical
Phonons. Qualitative Description Phonon Spectrum in Solids. Dulong and
Petit’s Law, Einstein and Debye theories of specific heat of solids. T° law.

Q.1. What are Lattice vibrations Discuss it for Monoatomic and Diatomic
Linear chain?

Ans. Lattice Vibrations: The oscillations of atoms in a solid about their
equilibrium positions. In a crystal, these positions form a regular lattice.
Because the atoms are bound not to their average positions but to the
neighboring atoms, vibrations of neighbors are not independent of each other.
In a regular lattice with harmonic forces between atoms, the normal modes
of vibrations are lattice waves. These are progressive waves, and at low
frequencies they are the elastic waves in the corresponding an isotropic
continuum. The spectrum of lattice waves ranges from these low frequencies
to frequencies of the order of 10”Hz, and sometimes even higher. The
wavelengths at these highest frequencies are of the order of interatomic
spacings.

At room temperature and above, most of the thermal energy resides in
the waves of highest frequency. Because of the short wave length, the motion
of neighboring atoms is essentially uncorrected, so that for many purposes
the vibrations can be regarded as those of independently vibrating atoms,
each moving about its average position in three dimensions with average
vibrational energy of 3kT, where kis the Boltzmann constant and T the absolute
temperature.

1D monatomic chain: The 1D monatomic chain is comprised of a single-
atom basis and an infinite 1D lattice with basis vector 7 . If we only consider
atomic displacements along the chain direction there are N = 1 degrees of
freedom per atom — a translational normal mode of an isolated atom.
Assuming a classical model with a harmonic potential, it can be shown that
the vibrational normal modes of a crystal (long-range pattern of atomic
displacements) correspond to a set of travelling waves: u, , = eltkr = o)

where k is the propagation vector or wave vector (|k| = 2n/}), is the
angular frequency, 4, is the k dependent amplitude of the mode, and the
atom in the n the unit cell is reached by the vector r = na.

(69)
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Diatomic ID lattice

Now we consider a one-dimensional lattice with two non-equivalent atoms
in a unit cell. It appears that the diatomic lattice exhibit important features
different from the monoatomic case. Fig.3 shoes a diatomic lattice with the
unit cell composed of two atoms of masses M, and M, with the distance
between two neighboring atoms a.

M4 Mo
n—1 n n+1 D ——

a
We can that the motion of this lattice in a similar fashion as for monoatomic
lattice. However, in this case because we have two different kinds of atom:s,
we should write two equations of motion.

dzun
12 = —CQuy =ty yq — 1ty ) (5.13)
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Q.2. What are Acoustic phonons?

Ans. Acoustic phonons are coherent movements of atoms of the lattice
out of their equilibrium positions. If the displacement is in the direction of
propagation, then in some areas the atoms will be closer, in others farther
apart, as in a sound wave in air (hence the name acoustic). If the wavelength
of acoustic phonons goes to infinity, this corresponds to a simple displacement
of the whole crystal, and this costs zero deformation energy.

Longitudinal and transverse acoustic phonons are often abbreviated as
LA and TA phonons, respectively. Optical phonons are out-of-phase
movements of the atoms in the lattice, one atom moving to the left, and its
neighbour to the right. This occurs if the lattice basis consists of two or more
atoms. They are called optical because in ionic crystals, like sodium chloride,
they are excited by infrared radiation. The electric field of the light will move
every positive sodium ion in the direction of the field, and every negative
chloride ion in the other direction, sending the crystal vibrating.

Optical phonons that interact in this way with light are called infrared
active. Optical phonons that are Raman active can also interact indirectly
with light, through Raman scattering. Optical phonons are often abbreviated
as LO and TO phonons, for the longitudinal and transverse modes
respectively.

Q.3. What is Dulong and petit's Theory also find its expression?

Ans. Classical Theory of Specific heat due to Vibrating Lattice

(or classical theory of Dulong & petit’s law)
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We know that in a solid, atoms are assumed to be free to vibrate their
mean position called atomic oscillators. The classical assumes that each atom
is a classical three-dimensional harmonic oscillator which vibrates
independently of all other atoms in the crystal, or in other way we can say
that the atoms of the crystal behave as independent classical harmonic
oscillators. Thus, one can calculate the heat capacity simply by finding the
average thermal energy of one oscillator, multiplying it by N, and finally
using equation for C,.

Let us consider the energy of a three-dimensional harmonic oscillator of

mass m and angular frequency ®,. The energy of harmonic oscillator is given

2

by E= P+ L, (32 +42 +22) Support by Donating
2m 2
2
or E= 5771+%m0)2oq2 B

Where p is the momentum and g the displacement from its equilibrium
position. According to Boltzmann distribution law, the average energy of
each harmonic oscillator is given by

3 J.Eexp(—kET)de

F\e Iexp(—kETjde (2)

where k is Boltzmann constant.

Putting equation (1) in eq. (2), we get alllabexperiments.com
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as all other terms cancel, numerator against denominator.
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Let =p?
So, we get

kTT a2 exp(—o? )dal kTTBZ exp(—p*)dp

B> exp(-B*)dp
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Using standard integral,
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and IQZ exp(—o?)da = Jx
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We have
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Hence, total vibrational energy of a crystal having N independent harmonic
oscillators in three dimensions for a gram molecule of a substance will be

E=3NE=3NkT

Where crystal is being treated in terms of 3 N one dimensional harmonic
oscillator. If we suppose that the atoms in a solid behave as free classical
harmonic oscillator about their equilibrium positions, then we see that the
classical theory predicts the lattice contribution to the molar heat capacity at
constant volume, which is given by

C, = B—ﬂ =3Nk=3R

or C, = 5.96 cal mol "K' [ . Nk = R]

This is called Dulong and Petit’s which states that the capacity of all solids
is constant and is independent of the temperature and for one mole of any
solid element it is equal to about 6 calories.

2 O
Q.4. Show that in Einstein model of specific heat C, = 3R(—] eT

Where symbols have their usual meaning. [Important]
Ans. Einstein Theory of Lattice Specific Heat of Solids.

In the classical explanation of specific heat, the atoms in the solid were
considered as simple harmonic oscillators vibrating independently and having
continuous energy between zero to infinity. This theory could not explain
the experimental fact that heat capacity of all solids approaches zero at low
temperatures. This discrepancy was explained by Einstein by assuming that

(i) the atoms are again considered identical independent harmonic oscillator
as in classical theory.

(ii) all the oscillators have same natural frequency ‘v” because of their
assumed identical oscillators.

(iii) a solid element containing N atoms, in equivalent to 3N one
dimensional harmonic oscillators.

(iv) the theory spectrum of oscillators is not continuous but discrete
continuous energy values butregarded as quantum harmonic oscillator which
of not have Planck’s hypothesis, an oscillator of frequency v has discrete
units of energy as multiples of hv, where h is Plank’s constant. The possible
energy levels of an oscillator may thus be represented by

€, = nhv, n=0,1,2 (1)

where 7 is any positive integer called the quantum number, v is the
frequency and & is Plank’s constant, Eqn.(1) may be written as

alllabexperiments.com
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h
€, = n2—27w
" alllabexperiments.com
= nho -(2)

where w is angular frequency and 7= % An energy level is labelled by

the value of this integer. Originally, Einstein used the above Planck’s result
but later the wave mechanical result

€, = (M%)hm ..(3)

was used which takes into account the term 7 (1/2) for the temperature
independent zero point energy contribution to the internal energy and shifts
all energy levels by the constant amount 7w/ 2.

As these quantised oscillator from an assembly of systems, which are
distinguishable or identifiable by virtue of their location at separate and
distinct lattice sites and since any number of these may be in the same energy
state of system, so the Maxwell Boltzmann distribution law is still applicable
for the description of their behavior. Since the energy is quantised that is
discontinuous, hence the average of the oscillator may be obtained by replacing
the integrals in Eqn. summation i.e.

Z ene—e”lknT
n=0

<e>="o -(4)

Z €, e—enlknT
n=0

Putting the value of € from eqn. (3) we have

. ho .
and putting x = o We have alllabexperiments.com
B

ho
<e>= W ..(5)

The first term of the R.H.S. of the eqn. is temperature independent

zero point energy of the oscillator <e > = hw/2 for T = 0. Thus according
to quantum mechanics, the atoms have vibrational energy event at absolute
zero. But this term does not make any contribution to heat capacity, because
C, is determined by the derivative of <€ > w.r.t. T. Further from eqn. (5) we
note denominator of R.H.S. can be expanded as
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2
eMo/kIgT -1 = 1 Jrh—®+l ho +.-1= ho (neglecting higher terms)
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So that <& >= kT alllabexperiments.com

Thus at higher temperature the average energy as obtained using Plank’s
Einstein distribution law for harmonic oscillator by the number of oscillator
3N in it, hence

S 3NAi®w  3Nhw

E=3N<e SO kgT-1
2
oF ho V(e keT)
= | = |=3Nk| — | =
and % (aTj B[kBTj (e ksT _1)2 (©)

The above expression (6) for C can be written in a simpler form by defining
characteristic temperature 6, called “Einstein temperature” such that

ho = kgbr
Substituting this in eqn. (4.14), we get

0 2 PWAT
C =3N kB(Tj FTE - (7)

Using eqn. if a plot is drown between C versus (T/6f), a general curve

for diamond of the form shown in Fig is obtained which indicates that
theoretical values of C  agree fairly well with the experimental values over a
wide range of temperature in which heat capacity varies appreciably with
temperature. The figure shows the agreement of the experimental values of
the heat capacity for diamond (dots) with values calculated on the Einstein’s
model using

0r = 1320 K
3R
T 6-——————————————————————6 —————————————
1 Experiment
% i“ Fc):urve\ OO
g 3T OO xTheoreticalcurve Support by Donatlng
T 2t o)
St 9
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Figure. Comparison of experimental values of heat capacity for
diamond with that theoretical values obtained Einstein using model (6,
= 1320 K).
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The temperature 0, is an adjustable parameter chosen to produced the
best fit to the measured values over the whole temperature range. Let us
now examine the behaviour of C, as calculated by eqn.(4.15) for extreme
temperature limits.

(i) When temperature are high enough such that T >> 6. becomes very
small and therefore Binomial expansion gives

/T = 1+e—E
T
5 2
0/T _q22(149 10|
and (e 1) _[1+ T +2![Tj 1]
alllabexperiments.com or § ) ]
=\ 7T (Neglecting higher order terms)

Substituting the above values in eqn.(4.15), we get

2
(149 %) G
C, = TAT :3Nk3(1+Ej

N :
T

= 3Nkj ( AST%W,%%O)

=3R
Thus, in this limit heat capacity approaches the classical value 3R which is
Dulong and Pett’s law. So the Einstein model is satisfactory at the high
temperature limit because at this temperature quantum concept becomes
irrelevant.

(ii) When temperature are low such that T << 8, or when T — 0,
8 /T — oo, therefore 0:/T>>1 50 (¢%6/T —1)? = (¢%6/T)? neglecting 1 in this
expression. Therefore eqn. (7) becomes

0 /T 2
- e 3
Co = 3Nk ﬁ(?)
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Thus in this limit, heat capacity is proportional to the dominating
exponential factor ,~®e/T and approaches zero as T approaches zero. Thus

specific heat of a solid decreases exponentially with temperature and vanishing
at absolute zero temperature. Although the fact that specific heat decrease
with fall — in temperature and that C, — 0 when T — 0 K agree with the
experiment but the manner in which it approaches zero does not,
Experimentally it is found to vary as T° for most of the solids. From the fig. It
is seen that the Einstein curve fits the experimentally observed value fairly
well at all temperature except at very low temperature where it falls off more
rapidly than it should and thus deviating from the experimental behaviours

(CvooT3) in this range of temperature.

Q.5. Derive an expression for specific heat of solids on the basis of Debye
model. How does Debye model differ from Einstein model? Discuss the
variation of specific heat with Temperature.

Ans. In Debye model the following simplifying assumptions are made:

1. In Einstein theory of specific heat of solids, each atom is supposed to
vibrate as a single unit/oscillator independently of its neighboring
atoms. But the situation is not so simple because each atom is under the
influence of the field of force of a number of other vibrating atoms.

Debye took into account the effect of coupling between neighboring
atom s and considered the solid as a continuous elastic body.

2. According to Debye the internal energy of a solid instead of residing
in the vibrations of individual atoms was present in the elastic standing
waves being produced because of the vibrations of individual atoms.

3. Further Debye assumed that the energy of these elastic standing waves
was not continuous but quantised. A quantum vibrational energy is
called phonon analogous to photon in e.m. waves. A phonon has energy
hv similar to that of a photon where v is frequency of vibration and & is
Plank’s constant. A phonon travels with the velocity of sound waves

are elastic waves in nature. Support by Donating
4. The number of vibrational modes of any kind in the frequency range v
and (v+dv)isgiven by Z(v)dv =%V2d\i where Z(v) is number of
A%

vibrational modes per unit frequency range and is known as density of
modes, V = ¥ is the volume of the solid taken in the form of a cube
having each side = L and v is the velocity of propagation of the wave
through the medium.

Z(v)dv = 4nv (% + %jvzdv
Vi V¢
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5. Debye further assumed that the phonon gas behaves like a boson gas
which obeys Bose-Einstein statistics and the averages energy <e> per
standing wave at a temperature T is given by

ho
<€>= 0/ kgT-1

If a quantum oscillator is associated with each vibrational mode of the
same frequency, the vibrational frequency of the crystal is given by

9D
E= J. <e > D(v)dv
0

Substituting the values of (v) from eqn. (4.29), we have
9D 3
1 2 ho
E= g 4nv{¥+g}—ehv T

dov

1 2P mw
4TCV|:_3+_:| ehv/kBT—l dv ...(4.31)

3
[T

From eqn. (4.30)

4nv{%+i} _ g alllabexperiments.com
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Substituting in eqn. (4.31), we have

E= ﬁvf L 4.32)
=0 ! 0/kgT-1 (4.
s ho kgT
Substituting X=1= and xp e get
B
v= kT or dv = %dx

Equation (4.32) therefore becomes

INE P x3k3T? kT dx 1
E=
v3) 0 I h ' -1

3 XD 3
N kT | ——dx ..(4.33)
hUD 0 €x—1
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As in Einstein model, it is convenient here also to introduce a characteristic
temperature, 6, called Debye temperature and defined as

hop
0,= .
B
hop  Op alllabexperiments.com
so that upper limit X,= —— =
kT T

Thus eqn. (4.33) can be written as Support by Donating

E=9NkyT| —| [ ——dx (1)
GD 0 e —1

The value of heat capacity or specific heat is obtained by differentiating
this energy expression w.r.t. absolute temperature.

3GD/T x_ 4
() of "
v

o= (9T op) o (F-1)
T
or C =3RF X — ..(2)
v D eD
where R = Nk, for one mole of the substance
4 6p/T 4 x
and F, = (lJ J. %dx
eD 0 (" -1)

is called Debye function.

4
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Heat capacity (Jmol~! K~1)

1 1 1 1 1 1 1 1
0 2 4 .6 .8 1.0 1.2 1.4 1.6

o —>
Expression. (2) gives the specific heat for one mole of the substance and is
called the Debye formula. If we plot heat capacity as a function of T/6, (fig),
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it is seen from this plot that the heat capacity the classical value 3Nk, at high
temperatures and zero at low temperatures. Now we examine below the
heat capacities at these temperature ranges more closely.

(i) For high temperatures i.e. for T >> 0, x is small as compared with
unity for the whole range of integration. In that case, the denominator of the

integrand in eqn. (1) i.e. €' —1=x, in first approximation, then we get
1 XD x3
—ogN—=kgT | —dx
E=9N ) B £ "

alllabexperiments.com 3

= 9Ni3kBTx—’”
p 3

E = 3Nk;T Support by Donating

and the specific heat

dE
C, = T 3Nkg =3R which is Dulong Petit’s law.

This specific heat is identical as obtained both by classical theory and
Einstein theory at high temperatures. Physically this means that the quantum
consideration are of almost no significance at high temperatures.

(ii) For very low temperatures i.e. for T >> 6, the upper limit of integration

0
of eqn. (1) becomes infinity, ( XD ZTD - °°j thus

Ud ex -1
h T £ 65(4) =63 U3
where = = =
0 e —1 1 n4 15

where &(4) is Riemann Zeta function.

3 4
E= 9NkBT[kB—TJ x

hUD 15
3 T
or E = gﬁé‘:NkBe—s (3)

D
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Thus the energy of vibration is proportional to T* at low temperature. The
specific heat is then given by

3
0E 12 4 T
=—=—"n"Nkg| — | forT<<9
=35 B(eD] o P
T 3
= 77.94x3R| — (4)
Op

This law is analogous to Stefan’s law Black body radiation. The phonons
(quantum of energy in elastic wave is called phonon) and photons (quantum
of energy of electromagnetic waves) obey the same statistics with the
difference that phonons obey T° law at temperatures while the photons obey
T* law at all temperatures.

Thus we find that specific heat is directly proportional to T° at extremely
low temperature because 8, is constant for the substance. This is called the
famous Debye’s T° Law.

Comparison of C from Einstein and Debye Theory. Plots of value of
heat capacity obtained form Einstein and Debye models Vs T'/6 are shown in
fig. The Debye curve lies above the Einstein curve. The reason is that in
Debye model, the lower frequency modes are taken into account and at low
temperature these have a higher average energy and temperature derivative
than the relatively high frequency Einstein oscillators.

Debye

Einstein
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Figure. Comparison for Cv obtained form Einstein and Debye models.
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