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General Discussion of Bound States in an

Arbitrary Potential

3

Syllabus: Continuity of wave function, boundary condition and energence
of discrete energy levels; application to one-dimensional problem-square
well potential; Quantum mechanics of simple harmonic oscillator-energy
levels and energy eigen functions using Frobenius method; Hermite
polynomials; ground state, zero point energy & uncertainty principle

Q 1. What are the necessary conditions for a wavefunction- continuity,
boundary condition and discrete energy levels?

Ans. Continuity of the wave function and of its derivative.

We shall for the time being consider only stationary states, and we shall

say “wave function” meaning the spatial wave function ( )u x

The 1D TiSE for a particle of mass m in the potential V(x) is
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Let us integrate this eqn from 0 to :x x 
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Now we postulate that the wave function is continuous everywhere.

This is plausible since the probability of finding the electron at two points
separated by an infinitesimal distance should not change discontinuously.

Then, if the P.E. is continues in the interval [ ]0 ,x x , we have
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u x u x V x x E u x x x= + + θ∆ − + θ ∆

ℏ

where [ ]0,1θ∈ and 0x x x∆ = −

(18)
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and taking the limit 0 . 0x x i e x+→ ∆ →  we get

lim [ ]0'( ) '( ) 0u x u x− =

0x x +→

i.e. the derivative of the wfn is also contiuous.

Only at points of infinite discontinuity of the P.E. function does the
derivative of the wavefunction exhibit a discontinuity. Such as in the case of
particle in a box we can't apply continuity at its boundaries because the potential
outside the box is infinity.

Q 2. Derive an expression for particle in a box.

V(x)

I II III

V(x) = ∞

a  x<
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V(x) = 0

0  x a≤ ≤ 

0 a

Ans. Schrodinger equation:

In region I and III:
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But V(x)=∞,

( ) 0x∴ψ = for both cases.

Now work on region II with V(x)=0

2 2 2

2 2 2

2
( 0)

2

m
V E E V

m x x

∂ ∂
− ψ + ψ = ψ ⇒ ψ = − ψ ∴ =

∂ ∂

ℏ

ℏ

      

2 2

2 2

( )
i i

mE mE
x x

x Ae Be
−

⇒ ψ = +ℏ ℏ

alllabexperiments.com 



20 B.Sc. (Hons.) Physics [Semester-V] (CBCS)

Let K 2

2mE
=
ℏ

Continuity at x=0 :

(0) (0) 0I II A B B Aψ = ψ ⇒ = + ⇒ = −

Continuity at x=a :

  ( ) ( ) 0 ika ika
I IIa a Ae Be−ψ = ψ ⇒ = +

⇒ 0 = ika ikaAe Ae−− (∴ B = –A)

⇒ A sin ka = 0

⇒ Ka = nπ      n = 1, 2, 3, ...., 4

1. n ≠ 0, because ψ(x) will be trivial (i.e. ψ(x) = 0) if n = 0

2. Take only positive n because negative n represents the
same wave function

⇒ Kn = 
n

a

π

E1 is the lowest energy state, so n = 1
    is the ground state.

or

π 
= =  

 

π
ψ =

ℏ ℏ
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V(x)
I II III

V(x) = ∞

a  0<

Ψ(x > a)

V(x) = ∞

a < x

Ψ(x < 0)

V(x) = 0

0  x a≤ ≤ 

0 a

We require  to be continuous at

these two points, but not the first

derivative , because V(x) is not

continuous at these two points.

Ψ

Ψ
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Q 3. Derive an expression for potential barrier.

(I) (II) (III)
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0u  is the incident wave

ru  is the reflected wave

tu  is the transmitted wave

Two cases are of interest:

(i) oE V<

(ii) oE V>

(i) Case 1: oE V<

Tise :   2 2 2
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General solution:
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No wave incident from the right:  G=0

Continuity at x=0 and x=a:
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i.e we have 4 equations for 5 coefficients (amplitudes).

Our strategy will be to express B and F in terms of A:

B is the amplitude of the reflected wave,

F is the amplitude of the transmitted wave

C and D are of no interest; we shall eliminate them
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 After solving these equations we get -

22 2
0

22
0 0

2
0

22
0 0

sinh

4 ( ) sinh

4 (

4 ( – ) sinh

B V ka
R

A E V E V ka

F E V E
T

A E V E V ka

= =
− +

−
= =

+  

R is the reflection coefficient

T is the transmission coefficient

T+R=1

R is the probability of the particle being reflected

T is the probability of the particle being transmitted

 Contrary to classical expectation, the particle is not completely reflected
by the barrier:

Partly it is reflected and partly it is transmitted.

(ii) Case 2: E>V0

for E>V0  we can similarly find the formulae for R and T (Exercise):

2 22
2 20

022
0 0

sin
; 2 ( )/

4 ( ) sin

B V Ka
R K m E V

A E E V V Ka
= = = −

− +
ℏ 

But we do not need to retrieve the formulae: just note that they are related
by the transformation K2 → – K2

(iii) Case 3: E = V0

Exercise: derive the formulae for this case (a) and (b) from the results of
cases 1 and 2 by taking the appropriate limit.

Q 4. Derive an expression for Potential step.

Ans. Potential Step

Consider a potential step described by

0( ) for 0 and ( ) 0 for 0V x V x V x x= > = <      ...(1)

We will first consider E > V0  and the region of negative x by I and positive
x by II and the corresponding wave functions ψI (x) and ψΙΙ (x) respectively
equation reads

2

2

d

dx
Ιψ

= 
2

2

2
whereI

mE
k k− ψ =

ℏ
  ...(2)
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2
IId
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ψ
= 

2 0
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m E V
q q

−
− ψ =

ℏ
  ...(3)
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The solution are simple and are linear combination of oscillating

exponentials . Recal that if ( ),ikxψ = ± the expectation value of the momentum

is k±ℏ yielding particle moving to the right and left respectively. Imagine

performing an experiment in which we fire particles with energy E from the
left only; i.e. there are no particles incident from the right. The particles will
be scattered by the potential and yield a part transmitted to x > 0 and another
reflected back to x < 0. Since there are no particles incident from the tight

(moving t the left), the term iqxe− will not be present in region II. So we write

( ) 0 .iqx
II x te xψ = >    ...(4)

In the region x < 0

( ) iqx ikx
I x e re−ψ = + ...(5)

Where we have set the coefficient of the incident wave to be 1. There is no
loss of generality in this since will see that rations of current densities are

measured. (Note again that ikxe is traveling to the right and is thus incident

on the potential discontinuity) and r and t are the coefficients(amplitudes) of
the reflected and transmitted waves respectively. The unknown quantities r
and t are determined by using the continuity of ψ and dψ/dx (denoted by ψ’)
at x = 0.  Matching boundary conditions we have

ψI(x = 0) :        1 + r = t     :  ψII(x = 0) ...(6)

ψ′I(x = 0)  :   ik(1 – r) = iqt   :  ψ′II(x = 0) ...(7)

which can be solved to obtain

(8)

2
(9)

k q
r

k q

k
t

k q

−
=

+

=
+

         

         

E
V0 V(x)

x
0

0

reflected

incident wave transmitted

Q 5. Find the Eigen values and energy eigen functions of a simple
harmonic oscillators using Frobenius method.

Ans. Find this solution in 2017 solved paper.

Q 6. Explain the terms like ground state, zero point energy and
uncertainty principle.
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Ans. Quantum Harmonic Oscillator: Energy Minimum from uncertainty
principle

The ground state for the quantum harmonic oscillator can be shown to be
the minimum energy allowed by the uncertainty principle.

The energy of the quantum harmonic oscillator must be at least

2
2 2( ) 1
( )

2 2

p
E m x

m

∆
= + ω ∆  ∆x = position uncertainty

                                     ∆p = momentum uncertainty

Taking the lower limit from the uncertainty principle

∆x∆p = 
2

ℏ

Then the energy in terms of the position uncertainty can be written

( )
2

22
2

1

28 ( )
E m x

m x
= + ω ∆

∆

ℏ

Minimizing this energy by taking the derivative with respect to the position
uncertainty and setting it equal to zero gives

2
3

0
4 ( )

2

– m x
m x

+ ω ∆ =
∆

ℏ

Solving for the position uncertainty gives

2
x

m
∆ =

ω

ℏ

Substituting gives the minimum value of energy allowed.

2 2
0 2

1
( )

2 4 4 28 ( )
E m x

m x

ω ω ω
= + ω ∆ = + =

∆

ℏ ℏ ℏ ℏ

This is a very significant physical result because it tells us that the energy
of a system described by a harmonic oscillator potential cannot have zero
energy. Physical systems such as arms in a solid lattice or in polygamic in a
gas cannot have zero energy even at absolute zero temperature. The energy
of the ground vibrational state soften referred to as “zero point vibration.”
The zero point energy is sufficient to prevent liquid helium-4 from freezing
at atmospheric pressure, no matter how low the temperature.

Key Points- Heisenberg's Uncertainty principle doesn't allow to have a
zero energy at n = 0 energy level. This state is its ground state and this
energy is its Zero point energy.
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