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SOME SOLVED EXAMPLES

Problem 1. A particle has the wave function

ψψψψ(r) =  Ne–ααααr

where N is a normalization factor and αααα is a known real parameter.

(a) Calculate the factor N.

(b) Caculate the expection values.

x , r , 
2r

in this state.

Solution: (a) The normalization factor is determined from the normaliza-
tion condition.

1 = 
2

3 2 2 1
3

0

| ( )| r N
d r r dr N e

∞
− α π

ψ = =
α

∫ ∫  

which gives

N = 
3α

π

We have used the integral ( 0)n ≥

0

n xdx x e
∞

−
∫  = ( 1) !n nγ + =

(b) The expectation value x vanishes owing to spherical symmery. For

example,

x  = 
1 2

2 3 2 2 3 2

0 1 0

cos sin cosr rN d r re N dr r e d d
∞ π

− α − α

−

= θ θ φ φ∫ ∫ ∫ ∫    

The expectation value of the radius is

r = 2 3 2 2 3 2

0

3
4

2
r arN d r re N dr r e

∞− α −= π =
α∫ ∫  

The expectation value of the radius is

r = 2 2 3 2 2 2 4 2
20

3
4r arr N d r r e N dr r e

∞− α −= = π =
α

∫ ∫  

Problem 2. Find the probability of finding the praticle between 0.1 to
0.2 of potential well of length L

z
.

Solution: The normalization wavefunctions of the various different lev-
els in the potential well are
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( )n zψ = 
2

sin
z z

n z

L L

 π
 
 

The lowest energy state is n = 1, and we are given L
z
 = 1 nm.

The probability of finding the electron between 0.1 and 0.2 nm from on
eside of the well is, using nanometer units for distance.

P = 
0.2 0.2

2 2
1

0.1 0.1

( ) 2sin ( )z dz z dzψ = π∫ ∫

= [ ]
0.2 0.2

2
1

0.1 0.1

( ) 1 cos(1 )z dz z dzψ = − π∫ ∫

= 
0.2

0.1

0.1 cos(2 )z dz− π∫

= [ ]
1

0.1 sin(2 0.2) sin(2 0.1)
2

− π× − π×
π

= 0.042

Problem 3. Consider first the commutator ˆ ˆ, zz p          operating on an arbitary

function f  in the position representation.

Solution: We have

ɵ, zz p f 
 
ɵ = { }

( )
( )

f z
i z i zf z

z z

∂ ∂
− +

∂ ∂
ℏ ℏ

= 
( ) ( )

( )
f z f z z

i z i z i f z
z z z

∂ ∂ ∂
− +

∂ ∂ ∂
ℏ ℏ ℏ

= i fℏ

and so we can state

ɵ, zz p 
 
ɵ = iℏ

Problem 4. A particle moving in one dimension is in a stationary state
whose wave funtion

( )xψψψψ = 

0,
,

1 cos , ,

,
0,

x a
x

A a x a
a

x a


< −< −< −< −

ππππ     
+ − ≤ ≤+ − ≤ ≤+ − ≤ ≤+ − ≤ ≤     

     >>>>


where A and a are real constant,
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(a) Is this a physically acceptable wave funtion? Explian.

(b) Find the magnitude of A so that ψψψψ(x) is normalized.

Solution: (a) Since ψ(x) is square integrable, single-valued, continuous,
and has a continuous first derivative, it is physically acceptable.

(b) Normalization of ψ(x): using the relation cos2 y = (1 + cos 2y)/2, we
have

1 = 
2 2 2( ) 1 2cos cos

a

a

x x
y x dx A dx

a a

+∞

−∞ −

π π  
= + +     

∫ ∫

= 2 3 1 2
2cos cos

2 2

a

a

x x
A dx

a a−

π π 
+ +  ∫

= 2 23
3 ;

2

a

a
A dx aA

−
=∫

hence A = 1/ 3a .

Problem 5. Consider a particle of mass m moving freely between x = 0
and x = a inside an infinite square well potential.

(a) Calculate the expection values 
� � � �

2 2 2 2

2 2
and

n n n n
X P X P  and com-

pare them with their classical counterparts.

Solution: �
n nXψ ψ  = * 2

0 0

2
( ) ( ) sin

a a

n n
n x

x x x dx x dx
a a

π 
ψ ψ =  

 ∫ ∫

= 
0

1 2
1 cos ,

2

a n x a
x dx

a a

π  
− =    

∫

= 2 2 2

0 0

2 1 2
sin 1 cos

a an x n x
x dx x dx

a a a a

π π    
= −        

∫ ∫  

= 
2

2

0

1 2
cos

3

aa n x
x dx

a a

π 
−  

 ∫  

= 
2

2

0
0

1 2 1 2
sin sin

3 2

x a
a

x

a n x n x
x x dx

n a n a

=

=

π π   
− +   

π π   ∫

= 
2

2 2
,

3 2

a a

n
−

π
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�
2

n nPψ ψ = 
2

2 *
20

( )
( )

a n
n

d x
x dx

dx

ψ
− ψ∫ℏ

= 
2 2 2 2 2 2

2
2 20

( )
a

n
n n

x dx
a a

π π
ψ = ⋅∫

ℏ ℏ

In deriving the previous three expresssion, we have used integrations by

parts. Since E
n
 = 2 2 2 2/(2 ),n maπ ℏ we may write

�
2

n nPψ ψ = 
2 2 2

2
2 n

n
mE

a
⋅

π
=

ℏ

Problem 6. Using ���� ����,X P    
      = iℏℏℏℏ , calculate the various commutation rela-

tions between the following operatores2.

����
1T  = ���� ����(((( ))))2 21

,
4

P X−−−−  ���� 2T  = �������� ��������(((( ))))1
,

4
XP PX++++  ����3T  = ���� ����(((( ))))2 21

.
4

P X++++

Solution: The operators �1T , �2T , and �3T can be viewed as describing some

sort of collective vibrations; �3T has the structure of a harmonic oscillator

Hamoltonian. The first commulator can be calculated as follows:

� �1 2,T T 
  = � � � � � � �

2 2 2 2
2 2 2

1 1 1
, , , ,

4 4 4
P X T P T X T     − = −
          

where, using the commutation relation � �,X P 
   = iℏ , we have

� �
2

2,P T 
  

= � � � � ��
2 21 1

,
4 4

P XP P PX   − +
      

= � � � � � � � � � � �� � �� �1 1 1 1
, , , ,

4 4 4 4
P P XP P XP P P P PX P PX P       + + +       

= � � � � � � � � � � � � � �
2 21 1 1 1

, , , ,
4 4 4 4

P P X P P X P P P X P P X P       + + +       

= � � � � �
2 2 2 2 2

4 4 4 4

i i i i
P P P P i P− − − − = −
ℏ ℏ ℏ ℏ

ℏ

� �
2

2,X T 
  

= � � � � ��
2 21 1

, ,
4 4

X XP X PX   +
      

= � � � � � � � � � � �� � �� �1 1 1 1
, , , ,

4 4 4 4
X X XP X XP X X X PX X PX X       + + +       
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= � � � � � � � � � � � � � �
2 21 1 1 1

, , , ,
4 4 4 4

X X P X X P X X X P X X P X       + + +       

= � � � � �
2 2 2 2 2

,
4 4 4 4

i i i i
X X X X i X+ + + =
ℏ ℏ ℏ ℏ

ℏ

hence

� �1 2,T T 
  = � � � � �( ) �

2 2 2
2 3

1 1
,

4 4
P X T i P i X i T − = + = −
  

ℏ ℏ ℏ

The second commutator is calculated as follows:

� �2 3,T T 
  = � � � � � � �

2 2 2 2
2 2 2

1 1 1
, , , ,

4 4 4
T P X T P T X     + = +
          

where � �
2

2 ,T P 
  

 and � �
2

2 ,T X 
  

 were calculated in (5.290) and (5.291):

� �
2

2 ,T P 
  

 = �
2

i Pℏ , � �
2

2 ,T X 
  

 = �
2

i X− ℏ .

Thus, we have

� �2 3,T T 
   = � �( ) �

2 2
1

1
.

4
i P i X i T− =ℏ ℏ ℏ

The third commutor is

� �3 1,T T 
  = � � � � � � �

2 2 2 2
3 3 3

1 1 1
, , , ,

4 4 4
T P X T P T X     − = −
          

where

� �
2

3 ,T P 
  

 = � � � � � � � � � � � �
2 2 2 2 2 2 2 21 1 1 1 1

, , , , ,
4 4 4 4 4

P P X P X P X X P X P X         + = = +
                  

= � � � � � � � � � � � � � � ��1 1 1 1
, , , ,

4 4 4 4
XP X P X X P P P X P X X P PX       + + +       

= � ��( ) �� ��( )ˆ2 2
4 4

i i
XP PX XP PX+ = +

ℏ ℏ

� �
2

3 ,T X 
  

 = � � � � � � � � ��( )
2 2 2 2 2 21 1 1

, , , ;
4 4 4 2

i
P X X X P X XP PX     + = = − +
          

ℏ

hence

� �3 1,T T 
   = � � � � � � ��( ) � � ��( )

2 2
3 3

1 1
, ,

4 4 8 8

i i
T P T X XP PX XP PX   − = + + +
      

ℏ ℏ
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= � � ��( ) �2 .
8

i
XP PX i T+ =

ℏ
ℏ

These relation are similar to those of ordinary angular momentum, save

for the minus sigh in � �1 2,T T 
   = �3 .i T− ℏ

Problem 7. In a region of space, a particle with mass m and zero energy
has a time-independent wave function

ψψψψ(x) = 
2 2/x LAxe−−−− ...(1)

where A and L constant.

•••• Determine the potential energy U(x) of the particle?

Solution. Time independent Schrodinger eqution for the wavefunction

( )xψ of a particle of mass m in a potential U(x).

2 2

2

( )
( ) ( )

2

d x
U x x

m dx

ψ
− + ψ
ℏ

 = ( )E xψ ...(2)

When a particle a particle with zero energy has wavefunction ( )xψ given

bh Eq. (1), it follows on substitution into Eq. (2) that

U(x) = 

2 2
2

4

2 3

2

L
x

mL

 
−  

 

ℏ

...(3)

U(x) is a parabola centred at x = 0 with U(0) = 2 23 .mL− ℏ

Problem 8. A proton is confined in an infinite square well of width 10
fm. (The nuclear potential that binds protons and neutrns in the nucleus
of an atom is often approximated by an infinite square well potential.

• Calculatethe energy and wavelength of the photon emitted when
the proton undergoes a transition from the furst excited state (n = 2)
to the groun d state (n = 1).

• In what region of the electromagnetic spectrum does this wavelength
belong?

Solution. Energy E
n
 of a photon of mass in the nth energy state of an

infinite square well potential with width L.

E
n

= 
2 2

28

n

mL

ℏ

The energy E and wavelength λ of a photon emitted as the particle makes
a transition from the n = 2 state to the n = 1 state are

E = 
2

2 1 2

3

8
E E

mL
− =

ℏ
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λ = 
c

E

ℏ

For a proton (m = 938 MeV/c2), E = 6.15 MeV and λ = 202fm. The wave-
length is in the gamma ray region of the spectrum.

Problem 9. A 1.00 g marble is constrained to roll inside a tube of length
L = 1.00 cm. The tube is capped at both ends.

Solution:

• Modsling this as a one-dimensional infinite square well, determine the
value of the quantum number n if the marble is initially given an en-
ergy of 1.00 mJ.

• Calculate the exitation energy required to proton the marble to the
next available energy state.

The allowed energy values E
n
 for a particle of mass m in a one-dimen-

sional infinite square well potential of width L are given

n = 4.27 × 1028

when E
n
 = 1.00 mJ.

The excitation energy E required to promote the marble to thr next availabel
enrgy state is

E = 
2

23
1 2

(2 1)
4.69 10 .

8
n n

n
E E J

mL

−
+

+
− = = ×

ℏ

This example illustrates the large quantum number and small energy dif-
ferences associated with the behavior of macroscopic objects.

Problem 10. The wave function

ψψψψ(x) = 
2xAxe−α

describe a state of a harmonic oscillator provided the constant αααα is cho-
sen appropriately.

• Using the Schrondinger Eq., determine an expression for αααα in terms
of the oscillator mass m and the classical frequency of vibration ωωωω.

• Determine the energy of this state and noumalize the wave function.

Solution. Schrodinger equation for a harmonic oscillator when

U(x) = 
2 2 21 1

2 2
Kx m x= ω  where ω = classical 

K

m
ω =

ψ(x) given by Eq. (53) satisfies Eq. (20) when

α = 
3

and
2 2

m
E

ω
= ωℏ

ℏ
   

Eq. gives the wave function of the excited state of the harmonic oscillator.
Requiring that
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2( )x dx
+∞

−∞
ψ∫ = 1

yeilds |A| = 

1/4332 α
  π 

Problem 11. An electron is describe by the wave function

ψψψψ(x) = 
0 for 0

(1 ) for 0x x

x

Ce e x−−−−

<<<<


− >− >− >− >

 

 

where x is in nm and C is a constant.

• Determine the value of C that normalizes ψψψψ(x).

• Where is the electron must likely to be found? That is, for what value
of x is the probability of finding the electron the largest?

• Calculate the average position x  for the electron. Compare this

result the most likely position, and comment on the difference.

Solution: An electron is described by the wave function ψ(x) given by
Eq. normalization contion-yields-

|C| = 1/22 3nm−

The most likely place x
m 

for the electron to be is where 2( )xψ is maximum

or, in this case, where ψ(x) is maximum. It follows from Eq. (58) that

x
m

= 1n 2nm = 0.693 nm

It follows from Eqs. that the average position x of a particle state ψ(x) is

x = 
2( )x x dx

+∞

−∞
ψ∫

It follows from Eqs. (58) and (61) that

x = 
13

1.083 .
12

nm nm≃

x > x
m 

because, according to given equation, values of x > x
m
 are

weighted more heavily in determining x .

Problem 12. Find LS spectral terms for non-equivalent electrons (npnd)
and also show what LS & JJ coupling schemes are the same. [Important]

Solution:

• npnd, i.e., p & d optically active electrons:

• L = |l
1
 – l

2
|...(l

1
 + l

2
) but l

1
 = 1, l

2
 = 2 ⇒ L = 1, 2, 3

• S = | s
1
 – r

2
|... (s

1
 + s

2
) ⇒ S = 0, 1 (s

1
 = s

2
 = ½)
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S = 0 L = 1 1P

S = 0 L = 2 1D

S = 0 L = 3 1F

S = 1 L = 1 3P

S = 1 L = 2 3D

S = 1 L = 3 3F

• Produce 6 terms: 1P, 1D, 1F, 3P, 3D, 3F

• Taking J into account in each case

• J = |L – S| ... (L + S)

• e.g., for 3F, L = 3, S = 1 ⇒ J = 2, 3, 4

thus full levels are 3F
2
, 3F

3
, 3F

4

S = 0 L = 1 J = 1 1P
1

S = 0 L = 2 J = 2 1D
2

S = 0 L = 3 J = 3 1F
3

S = 1 L = 1 J = 0, 1, 2 3P
0
, 3P

1
, 3P

2

S = 1 L = 2 J = 1, 2, 3 3D
1
, 2D

2
, 3D

3

S = 1 L = 3 J = 2, 3, 4 3F
2
, 3F

3
, 3F

4

• In total there are 12 levels for the 6 terms 1P, 1D, 1F, 3P, 3D, 3F

Both approaches LS and JJ are the same. As you can find in this example.
All the spectral terms are same. Do this examples if anybody asks to prove
that the LS and JJ coupling are the same.

���
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