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Time Independent Schrodinger Equation
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Syllabus: Hamiltonian, stationary states and energy eigen-values;
expansion of an arbitrary wave function as a linear combination of energy
eigen functions; General solution of the time dependent
Schrodingerequation in terms of linear combinations of stationary states;
Application to spread of Gaussian wave-packet for a free particle in one
dimension; wave packets, Fourier transforms and momentum space wave
function; Position-momentum uncertainty principle.

Q 1. Derive the time independent Schrodinger wave equation from time
dependent wave equation.

Ans. The wavefunction of a particle has two parts- space and time.

/( , ) ( ) iEx t x e−Ψ = ψ ℏ

If we substitute this trial solution into the schtodinger wave equation,
and make use of the meaning of partial derivatives, we get:
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We now se that the factor exp [ ]/iEt− ℏ cancels from both sides of the

equation, giving us
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If we rearrange the terms, we end up with
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Which is the time independent schrodinger equation. We note here that
the quantity E, which we have identified as the energy of the particle, is a
free parameter in this equation.

 Q 2. What is a Hamiltonian operator? Find the energy eigen values of a
wave function?
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Ans. In quantum mechanics, a Hamiltonian is an operator corresponding
to the total energy of the system in most of the cases.
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A stationary state is a quantum state with all observables independent of
time. It is an eigenvector of the Hamiltonian. In the time independent
Schrodinger equation, the operation may produce specific values for the energy
called energy eigenvalues. This situation can be shown in the form

op i i iH Eψ = ψ

Where the specific values of energy are called energy eigenvalues and the

iψ functions are called eigenfunction.

In addition to its role in determining system energies, the Hamiltonian
operator generates the time evolution of the wavefunction in the form

H i
t

∂
ψ = ψ

∂
ℏ

Q 3. Write a general solution to time dependent Schrödinger wave
equation.

Ans. In his time-dependent equation
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Suppose that, instead of proposing the solution ψ (r) we propose

Ψ (r,t)= ψ (r) exp ( / )iEt− ℏ
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 ( , )E r t= Ψ

alllabexperiments.com 



14 B.Sc. (Hons.) Physics [Semester-V] (CBCS)

( , ) ( )exp( / )so r t r iEtΨ = ψ − ℏ  solves the time-independent schrodinger

equation

Q 4. How to expand a wavefunction as a linear combination of energy
eigen functions?

Ans. A wavefunction that is not an eigenfunctions can be expanded as a
linear combination of eigenfunctions

1 1 2 2( ) ( ) ( )x c x c xψ = ψ + ψ

Verify that if 1 2( ) ( )x and xψ ψ  are normalized. then the normalized

wavefunction is

ψ = ψ + ψ
+

2 2
2 2
1 2

1
( ) ( ) ( )x c x c x

c c
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A generalization of the above statement is the superposition principle.

Q.5. Write down the Gaussian wave packet for a free particle in one
dimension.

Ans. Initial construction of the gaussian packet. To express the
circumstance that “x-measurement (performed at time t=0 with an instrument
of imperfect resolution) has shown the particle to reside in the vicinity of the
point x=a”

2( ,0) | ( ,0)|P x x≡ ψ = some properly positioned and shaped distribution

function and notice that such a statement supplies only limited information

about the structure of ( ,0)xψ itself:

( , 0)( , ) ( ,0). ia xx o p x eψ =  : phase factor remains at present arbitrary.

The phase factor has entered with simple innocence upon the stage, but is
destined to play a leading rely a the drama unfolds.

Whether we proceed from some tentative sense of the operating
characteristics of instruments of finite resolution or seek only to model such
statements on a concrete but analytically tractable way, it becomes fairly
natural to look to the special case
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The Gussian on the right defines the “normal distribution with

mean : x a=
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variance ≡ uncertainty  : ( )2 2x a− = σ

and the associated wave function reads
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Q 6. What is a wave packet? How Fourier transforms of momentum and
space wave functions are related?

Since the traveling wave solution to the wave equation

( , ) sin( )y x t A kx wt= − 
is valid for any values of the wave parameters, and since any superposition

is also a solution, then one can construct a wave packet solution as a sum of
traveling waves:

( , ) sin( )i i i
i

y x t A k x w t= −∑

If discrete traveling wave solutions to the wave equation are combined,
they can be used to create a wave packet which begins to localize the wave.
This property of classical waves in mirrored in the quantum mechanical
uncertainty principle.

∆x

λavg

∆k x ∆ ≈ 1

Adding several waves of different wavelength
together will produce an interference
pattern which begins to localize the wave.

But that process spreads the wave number 
k values and makes it more uncertain. This
is an inherent and inescapable increase

in the uncertainty  whe  is

decreased.

∆k x∆

We can represent a state with ( )xψ either or with ( )pφ .We can (Fourier)

transform from one to the other.

We have the symmetric Fourier Transform.
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When we change variable from K to P, we get the Fourier Transforms in

terms of x and p .
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Fourier transform of a gaussian is a gaussian. Let a Gaussian wave packet
representing the position of a particle then its FT in momentum space is also
a Gaussian. If the Gaussian Wave packet in position space is narrow then the
wave packet in momentum space is broad and vice versa. This gives rise to
the uncertainty principle.

Q 7. Explain Position-Momentum Uncertainty Principle.

Ans. The position and momentum of a particle cannot be simultaneously
measured with arbitrarily high precision. There is a minimum for the product
of the uncertainties of these two measurements.

2
P∆ × ∆ >
ℏ

Important steps on the way to understanding the uncertainty principle
are wave-particle duality and the De Broglie hypothesis. As you proceed
downward in size to atomic dimensions, it is no longer valid to consider a
particle like a hard sphere, because the smaller the dimension, the more wave-
like it becomes. It no longer makes sense to say that you have precisely
determined both the position and momentum of such a particle. When you
say that the electron acts as a wave, then the wave is the quantum mechanical
wavefunction and it is therefore related to the probability of finding the
electron at any point in space. A perfect sine wave for the electron wave
spreads that probability throughout all of space, and the "position" of the
electron is completely uncertain.
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p =
h

λ

Precisely determined momentum

∆x

λavg

Adding several waves of different wavelength
together will produce an interference
pattern which begins to localize the wave.

But that process spreads the wave number 
k values and makes it more uncertain. This
is an inherent and inescapable increase

in the uncertainty  whe  is

decreased.

∆k x∆

A sine wave of wavelength  implies that the

momentum is precisely known,
But the wavefunction and the
probability of finding the particle

 is spread over all of space!

λ

Ψ∗Ψ

∆x p∆  =
h

λ

p

x

 precise
 unknown
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