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Chapter-3

Kinetic Theory of Gases: Derivation of Maxwell’s law of distribution of velocities
and its experimental verification, Mean free path (Zeroth Order), Transport

Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of
equipartition of energy (no derivation) and its applications to specific heat of gases;
mono-atomic and diatomic gases.
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Que 1: Derive Maxwell Speed Distribution Directly from Boltzmann Distribution

Ans: Fundamental to our understanding of classical molecular phenomena is the
Boltzmann distribution, which tells us that the probability that any one molecule will be
found with energy E decreases exponentially with energy; i.e., any one molecule is
highly unlikely to grab much more than its average share of the total energy available to

all the molecules. Mathematically, the Boltzmann distribution can be written in the form

We will take it as a postulate here and show that the Maxwell speed distribution follows

from it.
Velocity Distribution in One Dimension

If the energy in the Boltzmann distribution

is just one-dimensional kinetic energy, then the expression becomes

But this must be normalized so that the probability of finding it at some value of velocity
is one. This is accomplished by integrating the probability from minus to plus infinity and

setting it equal to one. Making use of the definite integral form
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with the substitution Support by Donating
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allows us to normalize the function:

This normalizes the distribution function to

Converting this relationship to one which expresses the probability in terms of speed in

three dimensions gives the Maxwell speed distribution:

Speed distribution as a sum over all directions

To put the three-dimensional energy distribution into the form of the Maxwell speed

distribution, we need to sum over all directions.

Direct mathematical approach is to make the conversion of the cartesian volume

element to spherical polar coordinates
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Que 2: Explain and calculate Most probable speed, mean speed and Root mean

square speedjvelocity. alllabexperiments.com

Ans: There are actually three ways to quantify typical speeds of a distribution of
particles in thermal equilibrium and our back of the envelope calculation only gives us
one of them. The first typical speed is the easiest to calculate: the most probable speed.

Most Probable speed

The most probable speed occurs when f(v) is maximum. To calculate this we set the

derivative to zero:
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Mean speed

The next speed we will find is the mean speed, v. To find this, we find the expectation

value of v:
3/2
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Using the result that:
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] wexp(—z®ja®) = a2
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we get:
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It turns out this is slightly greater than the most probably speed
Root Mean square velocity

The last speed we will find is the root mean square velocity (vims). We

12 p— ﬁ &
define “rms = V" To find v°:
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Using the result that:
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we get:
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Thus, we find that: Support by Donating
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{3kT
Urms = V ?

Here is a plot showing the Maxwell speed distribution and the three typical velocities.
We can see from this plot that the Maxwell speed distribution is skewed to the right.

Que 3: An ideal gas A is at 27°C initially. The temperature of the gas is increased
to 927°C.Find the ratio of final Vims to the initial Vims.

5




B.Sc. (Prog) Sem-3 (Thermal Physics) Chapter-3

Ans: Vims=V3RT/M

So it is proportional to Temperature

Now

T1=27°C =300K

T2=927°C =1200K

So initial Vims = kN300 alllabexperiments.com
Support by Donating

Final Vims = k1200

ratio of final to initial = 2:1
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Que 4: Define mean free path for a molecule/particle.

Ans: In physics, the mean free path is the average distance traveled by a moving
particle (such as an atom, a molecule, a photon) between successive impacts
(collisions), which modify its direction or energy or other particle properties.
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Que 5 : Estimate Mean Free Path using Kinetic Theory of gases.

Ans: The mean free path or average distance between collisions for a gas molecule
may be estimated from kinetic theory. Serway's approach is a good visualization - if the
molecules have diameter d, then the effective cross-section for collision can be modeled
by

The effective

collision area
is

A=nd’

using a circle of diameter 2d to represent a molecule's effective collision area while
treating the "target" molecules as point masses. In time t, the circle would sweep out the
volume shown and the number of collisions can be estimated from the number of gas

molecules that were in that volume

center location
of target molecule
A

:.' ‘_: . . . ::
: O ; Volume = 7td° vt O
" ! Lo s y
Molecular \& : 3
size 1 vi >|

n, = molecules per unit volume

The mean free path could then be taken as the length of the path divided by the number
of collisions.
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Distance traveled Mean distance
Ny per collision
. vt 1
Mean free path estimate = n‘dz = - 5
Vi n n
Y V" Support by Donating
AN
Volume of Number of
interaction molecules per
unit volume

The problem with this expression is that the average molecular velocity is used, but the
target molecules are also moving. The frequency of collisions depends upon the
average relative velocity of the randomly moving molecules.

The problem with this expression is that the average molecular velocity is used, but the
target molecules are also moving. The frequency of collisions depends upon the

average relative velocity of the randomly moving molecules.

which revises the expression for the effective volume swept out in time t

The number of

Effective volume of 2 4 collisions is \/5

targets swept d " ~\2 vt times the number
with stationary
targets.

The resulting mean free path is
alllabexperiments.com
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Queb : Explain Diffusion, Viscosity and Thermal conductivity in gases and derive
the mathematical expressions.
Ans:
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Diffusion

Now 1if we consider gas with a concentration gradient it should be clear that
molecules will move from the more concentrated to the less concentrated
regions via a process of collision/random walk. This 1s diffusion process. If
over distance dx concentration change 1s dn the concentration gradient is
dn/dx. The number of molecules crossing 4 normal to gradient per second can
then be written as:

W __pdn (i-2--0%)

— M '
” o | = i e Fick's Law

Where D 1s called the coefficient of self-ditfusion and the negative sign implies
flow in the direction of smaller concentration.

Consider the following situation:
alllabexperiments.com

dn
n+—A
dx

Support by Donating

»
A

NS

A

3
|

v

X

We would then have the number of molecules per second crossing from 1

= i( n+ i A FA
6 dx
and from 3
| ( dan )—
=—| n——A vd
6 dx
There will also be molecules leaving on each side of 2 of number = l m_/’A

So the net transfer 1s then
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| dn |\~ | d -1 - 1 - ldn - dr
——(:HriﬁJvA +—(:r—iiJvA Svdr—mvd=—-" 4= DT 4
6 dx 6 dx 6 6 3 dx dx
hence
v N For air at STP 6=0.3nm, A=100nm, v=450m/s, n =3*10%m"
, 3 Smo which gives D of order 102 m?/s
also
— (8k, T\ hence D can be related with macroscopic 7 and also P and
v‘( i J V through »
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Viscosity
3 F must be applied to maintain constant flow. F 1s
@' proportional to 4 and w/h.
{ u
du
F=nd—
P e
e

We further assume: (1) #<<v, (11) the only molecules
reaching 2 are those that just made their collision at

1 5 ) a distance 4. Thus the number of molecules crossing
| Ais 1,54 persecond and from 3 this molecules
i ﬂ 1 ; bring {3 2 net horizontal momentum
dx | p g %
—— du \nv
“_1/1 m(u——/LJ—A
/R dx dx )6
! Vit : m(quﬂiJﬂ{
i Similarly fro 1 to 2 L &6
But 2 sends %n;A both ways too
Thus the total momentum transfer minv  du R
. ‘ F= A—op=—minv==——=
per second (i.e. force) is 3 dx 3 3 7o’
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Thermal conductivity

1 g 3 O=—KA ar where K 1s the thermal
! : | dx conductivity
r+i b ar
dx | | T ——2
— Now the rate of transport, this time of
A LA thermal energy ( dQ = C,dT ), 1s from 1
o nvA CV(T +d_T;L J
6 dx
- nmvd & ‘ T_d_T ;LJ so the net transfer at 2 is @C ar , ]
6 \ dx 3 "\ dxe
nvd - adr nvi
hence O=- c,A—=>K=——oc,
3 dx 3
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Que 7: State the law of equipartition of energy.

Ans: Each independent degree of freedom has an equal amount of energy equal to (1/
2) KT , where the constant k is called the Boltzmann constant and is equal to

k=13806505x10% J- K™ .

The total internal energy of the ideal gas is then

= N(# of degrees of freedom) %kT .

—

internal

This equal division of the energy is called the equipartition of the energy.

Que 8: Derive Specific heat at constant volume and at constant pressure for an
ideal gas.

Ans: The specific heats of gases are generally expressed as molar specific heats. For a
monoatomic ideal gas, the internal energy is all in the form of kinetic energy, and kinetic
theory provides the expression for that energy, related to the kinetic temperature. The

expression for the internal energy is

11
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Two specific heats are defined for gases, one for constant volume (CV) and one for
constant pressure (CP). For a constant volume process with a monoatomic ideal gas
the first law of thermodynamics gives:

Q=C,nAT Q=AU+ PAV =AU
1AU 3
v == — R
n AT 2
Further application of the ideal gas law and first law gives the relationship
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This value agrees well with experiment for monoatomic noble gases such as helium and
argon, but does not describe diatomic or polyatomic gases since their molecular
rotations and vibrations contribute to the specific heat. The equipartition of energy

predicts
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