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Chapter-8
diffraction

Diffraction: Fraunhofer diffraction: Single sht; Double Sht. Multiple shts &
Diffraction grating. Fresnel Diffraction: Half-period zones. Zone plate. Fresnel

Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis.
(14 Lectures)

Q:what do you understand by diffraction.
Ans:

In addition to interference, waves also exhibit another property — diffraction, which 15 the
bending of waves as they pass by some objects or through an aperture. The phenomenon
of diffraction can be understood using Huygens s principle which states that

Every unobstructed point on a wavefront will act a source of secondary spherical waves.
The new wavefront is the surface tangent to all the secondary spherical waves.

Figure 14.4.1 1illustrates the propagation of the wave based on Huygens’s principle.
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Figure 14.4.1 Propagation of wave based on Huygens's principle.

According to Huygens’s principle, light waves incident on two slits will spread out and
exhibit an interference pattern in the region beyond (Figure 14.4 2a). The pattern is called
a diffraction pattern. On the other hand, if no bending occurs and the light wave continue
to travel in straight lines, then no diffraction pattern would be observed (Figure 14.4.2b).
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Figure 14.4.2 (a) Spreading of light leading to a diffraction pattern. (b) Absence of
diffraction pattern if the paths of the light wave are straight lines.




Waves & Optics [Quick Notes] https://alllabexperiments.com

Q:explain single slit diffraction.
Ans:

In our consideration of the Young’s double-sht experiments, we have assumed the width
of the shits to be so small that each shit 1s a point source. In this section we shall take the
width of slit to be finite and see how Fraunhofer diffraction arises.

Let a source of monochromatic light be incident on a slit of finite width @, as shown in
Figure 14.5.1.
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Figure 14.5.1 Diffraction of light by a slit of width a.

In diffraction of Fraunhofer type, all rays passing through the slit are approximately
parallel. In addition, each portion of the slit will act as a source of light waves according
to Huygens’s principle. For simplicity we divide the slit into two halves. At the first
minimum, each ray from the upper half will be exactly 180° out of phase with a
corresponding ray form the lower half. For example, suppose there are 100 point sources,
with the first 50 in the lower half, and 51 to 100 in the upper half. Source 1 and source 51
are separated by a distance a/2and are out of phase with a path difference §=A4/2.
Similar observation applies to source 2 and source 52, as well as any pair that are a
distance a /2 apart. Thus, the condition for the first minimum is

8 gt (145.1)

2 2

T s (14.52)
i

Applying the same reasoning to the wavelronts from four equally spaced points a
distance a/4 apart, the path difference would be 5 =asiné/4, and the condition for

destructive interference is
24

i

sind = (14.5.3)
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The argument can be generalized to show that destructive interference will occur when

asm@=mA, m==1 +2 +3 . (destructive interference) (14.54)

Figure 14.5.2 illustrates the intensity distribution for a single-slit diffraction. Note that
=0 is a maximum.
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Figure 14.5.2 Intensity distribution for a single-slit diffraction.

By comparing Eq. (14.5.4) with Eq. (14.2.5), we see that the condition for minima of a
single-sht diffraction becomes the condition for maxima of a double-slit interference
when the width of a single shit @ 15 replaced by the separation between the two shts d. The
reason is that in the double-slit case, the slits are taken to be so small that each one is
considered as a single hght source, and the interference of waves originating within the
same slit can be neglected. On the other hand, the minimum condition for the single-slit
diffraction 1s obtained precisely by taking into consideration the interference of waves
that originate within the same slit.

Q:derive the expression for intensity of single slit diffraction.
Ans:
Let’s divide the single slit into N small zones each of width Ay=a/N, as shown in

Figure 14.6.1. The convex lens 1s used to bring parallel light rays to a focal point P on the
screen. We shall assume that Ay <4 so that all the light from a given zone is in phase.

Two adjacent zones have a relative path length & = Avsin@ . The relative phase shift AS
15 given by the ratio

AfF _d _Aysing

2r :
— Aff =—Aysinf# 14.6.1
i TR vij s ( )
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Figure 14.6.1 Single-slit Fraunhofer diffraction

Suppose the wavefront from the first point (counting from the top) arrives at the point P
on the screen with an electric field given by

E =E, sinax (14.6.2)
The electric field from point 2 adjacent to point | will have a phase shift Ag, and the

field 1s
E, = E, sin(amt + Af) (14.6.3)

Since each successive component has the same phase shift relative the previous one, the
electric field from point N 1s

E, = E, sin(@t +(N -1DAS) (14.6.4)

The total electric field is the sum of each individual contribution:

E=E +E, +E, =E,[sinot+sin(of +AB)+--+sin(at+(N-1)AB)| (14.6.5)

Note that total phase shift between the pomnt N and the point | 15

ﬁzNﬂﬂzzTﬁNﬂysinﬂzziasinﬂ (14.6.6)
A

where NAy = a . The expression for the total field given in Eq. (14.6.5) can be simplified
using some algebra and the trigonometric relation
cos(e — f)—cos(a + f)=2smmasin (14.6.7)
cos{ax — AR/ 2)—cos(emf + AF/2) =25 axsin{AfF/2)
cos(at + AfF [ 2)—cos(et +IASF [ 2) = 2sin(ant + AF)sin(AF [/ 2)
cos(an +3IAL/ 2)—cos(ant + 5A0 1 2) = 2sin(an + 2AF)sin(AF/ 2) (14.6.8)
cos[at + (N =1/2)A0]=cos[at +(N =3/ 2)AL] = 2sin[ext + (N = AZ]sin(AS [ 2)
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Adding the terms and noting that all but two terms on the left cancel leads to

cos(mt — AL 2)—cos[an — (N =1/2)A8]
- Zsin{ﬂﬁfz}[sinfm +sin(arf +AB)+--+sin( et +(N —115.,3}]

The two terms on the left combine to

(14.6.9)

cos(eat —=Af/2)—=cos[ant = (N =1/ 2)AfF] (14.6.10)
=2sin(r + (N =1)AB/2)sin(NAS/2) o
with the result that
| sinor +sin(e@r + Af)+--+sin(@t + (N -1)Af) |
_sinfet + (N ~1)AB/ 2]sin(8/2) (14.6.11)
si(Af/2)

The total electric field then becomes

& sin(#/2) ] . B
E—E,u[——-——u—sin{ﬁﬂm}}sm{rmﬂh' 1)AB/2) (14.6.12)

The intensity [ is proportional to the time average of E°:

-

_{,m,.} (14.6.13)

(E*)=E} [M} (sin® (@t +(N-1)AB/2)) =% 2 L'Hiﬂﬂf =
1

sin{AfF/2)

and we express [ as

. I‘L[ sin(4/2) ] (14.6.14)
N~ | sin(AfZ/2)

where the extra factor N* has been inserted to ensure that I, corresponds to the intensity
at the central maximum £ =0 (#=0). In the limit whereAfZ — 0,

Nsin(AB/2)= NABI2=5/2 (14.6.15)
and the intensity becomes
in(/2)] in(zasing@/ )
I=1, sin( #/2) -1 sm{.rm_am i) (14.6.16)
g2 rasing/ A

In Figure 14.6.2, we plot the ratio of the intensity [/, as a function of /2.
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Figure 14.6.2 Intensity of the single-slit Fraunhofer diffraction pattern.

Q: explain fresnel zones.
Ans:

In the study of Fresnel diffraction it is convenient to divide the aperture into regions called Fresnel zones. Figure
1 shows a point source, S, illuminating an aperture a distance z;away. The observation point, P, 1s a distance to
the right of the aperture. Let the line SP be normal to the plane containing the aperture. Then we can write

SQP =11 + Iy =y 212 +p2 +4 222 + p2

:zl+22+ilﬂ2 II.L_FL]_F...

2 \ 2z Zy |

Fig. 1. Spherical wave illuminating aperture.
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The aperture can be divided into regions bounded by concentric circles p = constant defined such that r; + r;
differ by 1/2 in going from one boundary to the next. These regions are called Fresnel zones or half-period
zones. If zjand z; are sufficiently large compared to the size of the aperture the higher order terms of the expan-
sion can be neglected to yield the following result.

A1, 1 1
nko Loz (L.,

2 2 L | Zo |

Solving for p,,, the radius of the nth Fresnel zone, yields

;:;n:\/n}tL arp;:\/ﬁ, pp_:-\{'zlL, -, where

If p, and p,, are inner and outer radi1 of the nth zone then the area of the nth zone is given by

Areaof nth Fresnel zone A

=TT ,l'.:'l'ul:Z =3I Bn
= (n+l) AL-m (n) AL
= A L= ;}12, independentof n.

That 1s, the area of all zones are equal. If the higher order terms in the expansion for SRQ are maintained the
area of the zones would slightly increase with increasing p. Generally, it 1s assumed that zjand z; are sufficiently

large compared to p that the higher order terms can be neglected and the area of all zones are equal.
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Chapter-9
Polarisation

Polarization: Transverse nature of light waves. Plane polarized light — production

and analysis. Circular and elliptical polarization. (6
Lectures)

Q:prove transverse nature of light waves.
Ans:
= When light waves are passed through two crystalline slits say A and B (These slits are the tourmaline

plates cut parallel to the axis of crystal). Ordinary light say from the sun is incident on the crystal A.a) When
crystal A and crystal B are parallel to each other, the intensity of the light emerging from crystal A is constant

at any orientation of A and passes through crystal B without any change.

M

»  Now crystal Bis rotated w.r.t. A, the intensity of emerging light from crystal B decreases and becomes zero,

S

when crystal B is at right angle w.r.t crystal A.

SN

» This experiment proves the transverse nature of the light waves. Crystal Ais called polariser and crystal B

i5 called analyser.

Q: state different methods by which plane polarized light can be produced.
Ans:
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Different methods of production of polarized light
(1) Polarization by reflection

(1) Polarization by refraction

(1) Polarization by selective absorption

(iv) Polartzation by double refraction

(v) Polarization by scattering

Q: how light can be produced by reflection.
Ans:

If a linearly polarized wave (Electric vector associated with the incident wave lies in the
plane of incidence) is incident on the interface of two dielectrics with the angle of

incidence equal to A . If the angle of incidence @ is such that
5l N
0wl

n

then the reflection coefficient is zero.

" 8, Mo reflected Air &, Planepolarized

", Partiallypolarized
Glass

Thus if an unpolarized beam is incident with an angle of incidence equal to @ , the

reflected beam is plane polarized whose electric vector is perpendicular to the plane of
meidence.

Above equation 1s known as Brewster’s law. The angle 6, is known as the polarizing

angle or the Brewster angle. At this angle, the reflected and the refracted rays are at right

sin EP sin EF
—n= = —>tanf, =n

angle to each other 1e. 8, +r= — =
sinr cosé,

T
2

For the air-glass interface, n, =1 andn, = 1.5 giving 8, = 5

Q:what is malus law?
Ans:
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An unpolarized light beam gets polarized afler passing through the Polaroid £ which has

a pass axis parallel to the x axis. When this x-polarized hght beam mncident on the

second Polaroid P, whose pass axis makes an angle & with the xaxis, than the intensity

of the emerging beam will vary as

Unpolarized
light

I=1,cos 8

where I represents the intensity of the emergent beam when the pass axis of P, is also

along the x axis (1.e., when @ =0), above equation known as Malus™ law.
Thus, 1if a linearly polarized beam is incident on a Polaroid and if the Polaroid 1s rotated
about the = axis, then the intensity of the emergent wave will vary according to the

above law.

Q:derive an expression for amplitude of circularly polarised light.

Ans: Let us consider a plane wave having electric field in x-y plane. The amplitude of electric field along
x axis is Eox and that of along y axis is E,,. The x and y components have some phase difference given by
o. The general expression for the electric field fo the em wave propagating along z axis of frequency is is
given by

E = E, i cos(kz—at)+E, ] cos(kz— at - ) @
Circularly polarized light

In equation (1), if the amplitude of the components of electric field along x axis and y axis are equal

E, =E, =E,
And the phase difference o = 7/2

Than equation (1) reduces to
E(z) =IE, cos(kz— wt) + |E, sin(kz— wt) (2)
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Let us monitor the variation of electric field as a function of time at a given location in the longitudinal
directionsayz=0

form equation 2

E(2) =IE, cos(—at) + JE, Sin(—amt) (3)

The magnitude of the x and y component of the electric field , the direction of the electric field and the
resultant electric field as a function of time are listed in table 1.

Table 1.
t Ex Ey | E | Direction of resultant
electric field
O Eo 0 EO T
_ Eo
2lw | EIN2 |-EI\2 N
2 0 -Eo Eo
2z [ g 1
2/ |-EIN2 | -E, 12 |E /
4 'Eo 0 Eo
2w —
5 _ Eo
/@ | -E, /N2 | E, /2 b\
6 0 Eo EO
&l |
Zlw | E,IN2 |E /2 | /"
27| @ |Eo 0 Eo —

The magnitude of the resultant electric field is constant (whch has to be as the
wave is propagating in a loslee media) but the component of electric fields along x
and y are changing and hence the direction of resultant electric field is changing
continuously. The resultant electric field vector E is rotating clock wise at an
angular frequency w.

From equation (2), the x component

E, = E,i cos(kz—wt) (4)
and y component
E, =E,jsin(kz—ot) (5)

the magnitude of electric field from above
E?=E?+E%=E? (6)
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Equation (6) represents the equation of circle. Therefore we can describe the
wave given by equation (2) as a wave whose direction of electric field is rotating
in x-y plane with the angular frequency, the frequency of the wave and the tip of
the electric field is moving in a circle in clock wise direction as shown in the fig 1
below.

right Y
circularly
polarized
light
\ I
Z

Fig 1 (animation for right circularly polarized light. This kind of wave is termed as
right circularly polarized light. Suppose that the phase difference is such that
equation 2 reduces to
E(2) =(E, cos(kz— at) — |E, sin(kz— wt) (7)

In the above case the tip of the electric field will be encircling with a frequency ®
but in anti clockwise direction as shown in fig 2. This kind of wave represented by
eq 7 is termed as left circularly polarized light

\

/' “ P AT
| 4 :
\' _ A0 \

Left Circularly Polarized Light
Fig 2 left circularly polarized light
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From eq 3 and 7, the circularly polarized light can be generated by super position
of two orthogonal polarization of same amplitude and frequency but having a
phase gap of +7t/2

Q:derive an expression for amplitude of elliptically polarised light.

Ans; Elliptically polarized light

Considering the general expression for electric field of a plane wave propagating
along z axis

E = E,,i cos(kz—at)+E,, j cos(kz— wt + ) 9)
under the situation E, #E,, The x and y components of electric fields are given
by

E, = E, cos(kz—at) (10)
and
E, = E,, cos(kz— ot +a) (11)

With some rearrangement equation 10 and 11 can be put together in the form

2 2
E
E, +=L] -2 E ) E cosa =sin’a (12)
on Eoy on on

Equation 12 represents an equation of an ellipse with axis as Ex and Ey as shown in
figure 3. The major (minor) axis of the ellipse making an angle of 0 with Ex (E,)
given by

tan26 =2 E"XE"VZ cosa
X oy

Yoo

Figure 3
The tip of the electric field vector sweeps an ellipse with in one time period in
clock wise direction in x-y plane. Such a wave represented by equation 11 (or eq
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12) is called as right elliptically polarized wave. When the electric field associated
with the wave is given by

E = E,,i cos(kz—at)—E,, j cos(kz—at +«) (13)

The tip of the electric field vector sweeps an ellipse in an anti clock wise direction
and such waves are termed as left elliptically polarized waves.

Equation 9 and eq 13 reduces to egs 3 and 7 respectively for a=+m/2 and Eox=Eoy.
This means that circular polarized light is an special case of elliptically polarized
light.






