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Chapter -7
Molecular Collisions

Molecular Collisions: Mean Free Path. Collision Probability. Estimation of Mean Free
Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity

Que1: Define mean free path for a molecule/particle.

Ans: In physics, the mean free path is the average distance traveled by a moving
particle (such as an atom, a molecule, a photon) between successive impacts
(collisions), which modify its direction or energy or other particle properties.

Que2: Derive an expression for number of collisions for a gas molecule in a given
volume.

Ans:

Number of collisions per unit area per second (f7ux)

Consider a volume of gas with concentration » and mean velocity v and lets see
how many molecules will pass through an area 4 per unit time. We further split
our velocity in three components one of which 1s perpendicular to area 4 (we
done this before in kinetic theory). Then in time 7 about 1/6 of the molecules in
the volume 174 will pass through 4 and hence flux ;:

\]:;; ,_anAf 1 -

A ) j=———=—nv
V =14=4 6 Ar 6

]/GT/ |
|

Que3 : Estimate Mean Free Path using Kinetic Theory of gases.
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Ans: The mean free path or average distance between collisions for a gas molecule
may be estimated from kinetic theory. Serway's approach is a good visualization - if the
molecules have diameter d, then the effective cross-section for collision can be modeled

by

The effective
collision area
is

A=nd’

using a circle of diameter 2d to represent a molecule's effective collision area while
treating the "target" molecules as point masses. In time t, the circle would sweep out the
volume shown and the number of collisions can be estimated from the number of gas
molecules that were in that volume

center location
of target molecule
A

Ll

e Molecular :
size 1 vi >|

Volume = 71d*vit O

n,, = molecules per unit volume

The mean free path could then be taken as the length of the path divided by the number
of collisions.

Distance traveled Mean distance
N per collision
. vt 1
Mean free path estimate = 57— — 5
sdvtn, mdn,
AN
Volume of Number of
interaction molecules per
unit volume
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The problem with this expression is that the average molecular velocity is used, but the
target molecules are also moving. The frequency of collisions depends upon the
average relative velocity of the randomly moving molecules.

The problem with this expression is that the average molecular velocity is used, but the
target molecules are also moving. The frequency of collisions depends upon the
average relative velocity of the randomly moving molecules.

which revises the expression for the effective volume swept out in time t

The number of

Effective volume of collisions is \/5
2 = :
targets swept wd 2 vt times the number
with stationary
targets.

The resulting mean free path is

aN, nN, N,P _
v nRT Rt ?L __RT E
P  \2md’N,P

Ry =

Que4 : Explain Diffusion, Viscosity and Thermal conductivity in gases and derive
the mathematical expressions.
Ans:
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Diffusion

Now if we consider gas with a concentration gradient it should be clear that
molecules will move from the more concentrated to the less concentrated
regions via a process of collision/random walk. This 1s diffusion process. If
over distance dx concentration change is @n the concentration gradient is
dn/dx. The number of molecules crossing 4 normal to gradient per second can
then be written as: : —
dN dn (. dN _ an

7r=_DEA |-J_Adf__ ) | Fick's Law

Where D 1s called the coetficient of self-ditfusion and the negative sign implies
flow in the direction of smaller concentration.
Consider the following situation:

L 2

dan .
)

dx n

dx

~.

|
|
S

h
y
5

A

X

We would then have the number of molecules per second crossing from 1

= i{ n+ i A FA
6 dx
and from 3
1 ( dn . )—
== p——71 i
6 dx
There will also be molecules leaving on each side of 2 of number = l m_/’A

So the net transfer 1s then

_1(11+ﬁﬁ,);14+l(ﬂ—ﬁﬁ];ﬂ—l”;A+l”;A:_lﬁﬁ;A _ —DﬁA
6 dx 6 dx 6 6 3 -

hence
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5 v v For air at STP 6=0.3nm, /=100nm, v=450m/s, n ~3*102m"
= T = - 2 _

] > ™9 | which gives D of order 102 m?/s
aiso
~ (k7" hence D can be related with macroscopic 7 and also P and

B ( . J V through n

Viscosity
F F must be applied to maintain constant flow. F'is
E’ proportional to 4 and w/h.

¥ = J]L{@

h i 7 dx
A

We further assume: (1) #<<v, (11) the only molecules
reaching 2 are those that just made their collision at

1 4 ; a distance A. Thus the number of molecules crossing
, ) . A1s %r?;ﬂ per second and from 3 this molecules
ey du y | | bring to 2 net horizontal momentum
= i |
dx | : ] -
i ; i du _\nv
| oy ”_@,1 m[u—lﬂlﬂ;
e N dx ) 6
| 7 Similarly fro 1 to 2 m(n e A)EA
X = . o )6
But 2 sends én;A both ways too
Thus the total momentum transfer minv du | 1 - 1mv
: . F= A— D =—mAny=——+
per second (1.e. force) 1s 3 dx 3 3 no”
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Thermal conductivity

1 2 3 0=k ar where K 1s the thermal
JT - dx conductivity
e——i o Y WS
dx | T ——
] dx Now the rate of transport, this time of
S thermal energy (40 =C,dT ), is from 1
" 0 )
6 dx
from 3 ik Cyr ( T T )LJ so the net transfer at 2 1s ”:’_4 o[
6 s dx 3 "lax
nvd . dT nva
hence O=-— c,A—= K = G
3 dx 3
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Chapter — 8
Real Gases

Real Gases:Behavior of Real Gases: Deviations from the Ideal Gas Equation. Andrew’s
Experiments on COy Gas. Virial Equation. Critical Constants. Continuity of Liquid and

Gaseous State. Vapour and Gas. Boyle Temperature. van der Waal’s Equation of State
for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison
with Experimental Curves. p-V Diagrams. Free Adiabatic Expansion of a Perfect Gas.
Joule-Thomson Porous Plug Experiment. Joule-Thomson Effect for Real and van der
Waal Gases. Temperature of Inversion. Joule-Thomson Cooling. (10 Lectures)

Que1: Distinguish between Ideal and Real Gases.

Ans: A gas which obeys the ideal gas equation, PV = nRT under all conditions of
temperature and pressure is called an ‘ideal gas’. However, there is no gas which
obeys the ideal gas equation under all conditions of temperature and pressure. Hence,
the concept of ideal gas is only theoretical or hypothetical. The gases are found to obey
the gas laws fairly well if the pressure is low or the temperature is high. Such gases are,
therefore, known as ‘Real gases.’ All gases are real gases. However, it is found that
gases which are soluble in water or are easily liquefiable, e. g. CO2, SO2, NH3 etc. show
larger deviations than the gases like Hz, Oz, N2 etc.

Differences between Ideal Gas and Real Gas

Ideal Gases obey all gas laws under all Real Gases obey gas laws only at low pressures

conditions of temperature and pressure. and high temperature.

The volume occupied by the molecules isThe volume occupied by the molecules is not
negligible as compared to the total volumenegligible as compared to the total volume of the
occupied by the gas. gas.

The force of attraction among the molecules areThe force of attraction are not negligible at all
negligible. temperatures and pressures.

Obeys ideal gas equation Obey Van der Waals equation

PV =nRT (P + an?/V?) (V - nb) = nRT

Que2: Explain the causes of deviation from Ideal gas behavior.
Ans: Causes of Deviation from Ideal Behaviour

As stated above, the real gases obey ideal gas equation (PV = nRT) only if the pressure
is low the temperature is high. However, if the pressure is high or the temperature is
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low, the real gases show marked deviations from ideal behaviour. The reasons for such
a behaviour shown by the real gases have been found to be as follows:

The derivation of the gas laws (and hence of the ideal gas equation) is based upon the
Kinetic Theory of Gases which in turn is based upon certain assumptions. Thus, there
must be something wrong with certain assumptions. A careful study shows that at high
pressure or low temperature, two assumptions of Kinetic Theory of Gases are fails:

e When compared to the total volume of the gas, the volume occupied by the gas

molecules is negligible.

e The forces of attraction or repulsion between the gas molecules are negligible.
The above two assumptions are true only if the pressure is low or the temperature is
high so that the distance between the molecules is large. However, if the pressure is
high or the temperature is low, the gas molecules come close together. Hence, under
these conditions:

e The forces of attraction or repulsion between the molecules.
e The volume occupied by the gas may be so small that the volume occupied by
the molecules may not be negligible.

Que3: Explain the van der Waals Equation of State for Real gases.

Ans: The ideal gas law treats the molecules of a gas as point particles with perfectly
elastic collisions. This works well for dilute gases in many experimental circumstances.
But gas molecules are not point masses, and there are circumstances where the
properties of the molecules have an experimentally measurable effect. A modification of
the ideal gas law was proposed by Johannes D. van der Waals in 1873 to take into
account molecular size and molecular interaction forces. It is usually referred to as the
van der Waals equation of state.

The constants a and b have positive values and are characteristic of the individual gas.
The van der Waals equation of state approaches the ideal gas law PV=nRT as the
values of these constants approach zero. The constant a provides a correction for the
intermolecular forces. Constant b is a correction for finite molecular size and its value is
the volume of one mole of the atoms or molecules.
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Qued4: Explain the deviation of Real gases using PV diagrams.

Ans: To understand the deviations from ideal behaviour, let us first see how the real
gases show deviations from Boyle’s law. According to Boyle’s law, PV = constant, at
constant temperature. Hence, at constant temperature, plot of PV vs. P has to be a
straight line which is parallel to x-axis. However, the real gases do not show such a
behaviour as shown in figure no. 1 below.

From the plots, we observe that for gases like H2 and He, PV increases continuously
with increase of pressure whereas for gases like CO, CH4 etc. PV first decreases with
increase of pressure and reaches a minimum value and then increases continuously
with increase of pressure.

ideal gas

pV ——b

From above graph, we observe that at higher pressure, volume which is observed is
higher than that of calculated volume. At lower pressures, the observed and the
calculated volumes approach each other.

Que5: Explain the deviation of Real gases from Idea gas equation using
compressibility factor.

Ans: Extent upto which a real gas deviates from ideal behaviour can be studied using
the terms of a quantity ‘2" which is known as the compressibility factor, and defined as:

vreal
Videal

7 =

(i) Foranideal gas,as PV =nRT,Z=1
(i) For areal gas, as PV # nRT, Z # 1.
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Hence, two cases arise:
(&) When Z < 1, (For Example: for CHs4, CO2 etc.) The gas is said to show negative
deviation. Therefore, gas will show more compression than expected from ideal
behaviour.

This is caused by predominance of attractive forces among the molecules of these
gases.

(b) When Z > 1, the gas is said to show positive deviation. This implies that the gas will
show less compression than expected from ideal behaviour.
This is caused by the predominance of the strong repulsive forces among the
molecules. Greater the departure in the value of Z from unity, greater are the deviations
from ideal behaviour.

At the same temperature and pressure, the extent of deviation depends upon the nature
of the gas, as shown in figure below. Thus, at intermediate pressures, CO2 shows much
larger negative deviation than Hz or N2.

2.0

Z =PV/nRT —>
=
[F;]

1.0 =
IDEAL GAS Z= 1
CH.
05 [z<1]
o ] ] ] ] ]

100 200 300 400 500
P (atm) —

Que6: Explain Virial equation.

Ans:

The compressibility factor of a gas Z is defined as Z = pV//(nRT) = pVin/(RT). where the subscript
on V indicates that this is a molar quantity. Obviously, for an ideal gas, Z = 1 always. For real gases,
additional corrections have to be mtroduced. Viral equations are expressions in which such corrections
can be systematically incorporated. For example,

B(T) <C(T)
%+ . 3 &
Vin Vi

Z =1

We may substitute for 1j, in terms of the ideal gas law and get an expression in terms of pressure, which
1s often more convenient to use:
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Z = 1+

B . C 4.
rTY T ®DZ T

1+B(T)p + CEN° + ...

The constants B, C’ etc., have to be found experimentally for each gas.

Que?7: Define Critical Point of a Real gas.

Ans: Liquid and gas can coexist only within the regions indicated by the green-shaded
area in the diagram above. As the temperature and pressure rise, this region becomes
more narrow, finally reaching zero width at the critical point. The values of P, T, and V at
this juncture are known as the critical constants Pc, Tc, and Vc. The isotherm that
passes through the critical point is called the critical isotherm. Beyond this isotherm, the
gas and liquids become indistinguishable; there is only a single fluid phase, sometimes
referred to as a supercritical liquid (Figure below).

CO5
100 H 48°C
if 35.5° @
critical point
E 80f||\ 310
o
g I
— 21!2!
w
2 6012 1
o 13¢
= B )
condensation region 2
40 3
L 1 1 1 | l
40 80 120 160 200 240 280 -
volume, cm? &

At temperatures below 31°C (the critical temperature), CO2 acts somewhat like an ideal
gas even at a rather high pressure. Below 31°, an attempt to compress the gas to a
smaller volume eventually causes condensation to begin. Thus at 21°C, at a pressure of
about 62 atm , the volume can be reduced from 200 cm?® to about 55 cm? without any
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further rise in the pressure. Instead of the gas being compressed, it is replaced with the
far more compact liquid as the gas is essentially being "squeezed" into its liquid phase.
After all of the gas has disappeared, the pressure rises very rapidly because now all
that remains is an almost incompressible liquid. Above this isotherm, CO:2 exists only as
a supercritical fluid.

Ques8: Calculate critical constants for a Real gas.

Ans: Van der Waals equation of state for real gas is given as

a nY \(V
{p+V—;J(Vmb) p+a[;) (;—b)—RT

In order to find the relationship between the critical parameters p,, Vi and T, and the van der Waals
constants a and b, one considers the shape of the critical isotherm that has an inflection point at the
critical point. At this point the critical isotherm has both a horizontal tangent dp/dV, .,=0anda

vanishing second derivative d°p/0V’2 _=0 . The partial derivatives are:

0 RT, 2a
I ) o =0
aVm T (mG ~ b) mG
d’p| _ 2RT,  6a b
aV; T (mG i b)3 Vr:k

With the van der Waals state equation the critical point can be evaluated as:
a 8a

=375 " o7pp Vm=3b

Py

or

LR RT,

64p, 8p,
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Que9: Define Boyle temperature or Boyle point.

Ans: The temperature at which a real gas behaves like an ideal gas over an
appreciable pressure range is called Boyle temperature or Boyle point.

Que10: Give an Explanation of the Behaviour of Real Gases by van der Waals
Equation.

Ans:

o At Very Low Pressures, V is very large. Hence, the correction term a/V?is so
small that it can be neglected, Similarly, the correction term ‘b’ can also be
neglected in comparison to V. Thus, van der Waals equation reduces to the form
PV = RT. This explains why at very low pressures, the real gases behave like
ideal gases.

o At Moderate Pressures, V decreases. Hence, a/V?increases and cannot be
neglected. However, is still large enough in comparision to ‘b’ so that ‘b’ can be
neglected. Thus, van der Waals equation becomes

[P+1)V—RT or RV4 = =RT orPV= RT — =
v Vv Vv

PV q
OR —=1———
RT RTV

a

OR Z=1———
RTV

Thus, compressibility factor is less than 1. So at when at constant temperature,
pressure is increased, V decreases so that the factor a/RTV increases. This explains
why initially a dip in the plot of Z versus P is observed.

« At High Pressures, V is so small that ‘b’ cannot be neglected in comparison to
V. The factor a/V? is no doubt large but as P is very high, a/V? can be neglected
in comparison to P. Thus, van der Waals equation reduces to the form:

P (V—b) = RT or PV =RT + Pb

PV Pb

OR —
RT RT

OR 2—1+Pb
- RT
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Thus, compressibility factor is greater than 1. As P is increased (at constant T),
the factor Pb/RT increases. This explains why after minima in the curves, the
compressibility factor increases continuously with pressure.

« At High Temperatures: V is very large (at a given pressure) so that both the
correction factors (a/V? and b) become negligible as in case (i). Hence, at high
temperature, real gases behave like ideal gas.

Quei1: Explain Free adiabatic expansion of a perfect gas.

Ans: Free expansion is an irreversible process in which a gas expands into an insulated
evacuated chamber. It is also called Joule expansion.

Before |

During

After

Real gases experience a temperature change during free expansion. For an ideal gas,
the temperature doesn't change.

Adiabatic free expansion of a perfect gas

For an adiabatic free expansion of an ideal gas, the gas is contained in an insulated
container and then allowed to expand in a vacuum. Because there is no external
pressure for the gas to expand against, the work done by or on the system is zero.
Since this process does not involve any heat transfer or work, the first law of
thermodynamics then implies that the net internal energy change of the system is zero.
For an ideal gas, the temperature remains constant because the internal energy only
depends on temperature in that case. Since at constant temperature, the entropy is
proportional to the volume, the entropy increases in this case, therefore this process is
irreversible.
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Que12: Explain Joule-Thomson effect for Ideal and Real gases.

Ans:

By the Joule-Thomson effect we refer to a change in the temperature of a gas which
occurs during adiabatic expansion of gas through a throttle from high pressure p; to lower
pressure ps. We will now calculate this change in temperature. Similar to the Joule effect.
this is an irreversible process.

Assume that before the expansion, the gas occupies volume Vi, after the expansion -
Va. We can think of the system as having two pistons, one at each side of the throttle, that

keeps the pressures p; and po constants (see Figure 4).

Throttle
, \
g P1' T1 > ‘ PZ!
= reales '/ 12 | | 4_{

Gas ‘

| 15|

(/777772777000

Fig. 4.— The Joule-Thomson expansion through a throttle. The two pistons ensure constaint
pressures on the two sides of the throttle.
The work done on the gas by the pistons is

&

] Vo
W = —/ prdV —f p2dV = —p1(0 = Vi) — pa(Vo — 0) = p1 Vi — pu Vi
v 0
The device is thermally isolated. Thus, from the first law AE =Q +W =W or

Fs — E1 = p1Vi — paVa
_b/‘Q + Pa ‘U/Q == b‘rl —+ P1 "1
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Recall the definition of the Enthalpy, H = E + pV'; Equation 42 is simply H; = Hy. Thus,
the Joule-Thomson process conserves the enthalpy - it is an isenthalpic process.

We can now repeat similar calculations to those used in calculating the temperature in
the Joule eftect (Equations 30 - 36), but with H replacing £ and p replacing V. We use
dH(T,p) = 0; The temperature T and the pressure p change during the process, and so

oH ) (E)H )
( or p dp T

we can define the Joule-Thomson coefficient,

) oH
& L (()T) (aP)T
kpp = ) S—ram
Ip ) g (%)p

The denominator in above equation is

(38), (50,3 - () -
ar )~ \aT ), ar ), \oT ), &

from which ) _
k. e 1 oF 5 d(pV)
B Cp dp /¢ dp Jr '

We can write the numerator using the fundamental relation:

dE = TdS —pdV
1 1 7
dS = LdE+ Bdv

LdH — ¥.dp.
Let us substitute in:
as = (%) _dp+ (%), dr
dH = (%) dp+ (%), dT.
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Equating coeflicients of dT', dp, one gets

)y

{%)T kR

cross-differentiate (9%2S/(dpdT) = 925/(90Tdp)) and simplify, one gets

P
3%
e
-}
[
M= "‘il'-‘
iﬂ\%

/""'_"“\

JdH )%
= — R ;
op ) r JdT »
from which we obtain
1 AV
yim=— |T | = -V
G AT,

For amn ideal gas. ey = (; thus, the temperature of the gas doesn’'t change. However,
even for non-ideal gas. a yp = ) provided that

oV
Tl =3P
ar ),

Equation above defines a curve in the T — p plane (see Figure 5): this curve is known as
inversion curve.

Also plotted in the figure are isenthalps, curves of constant enthalpy:.

Inside the inversion curve, T increases with p along isenthalp, and thus ajp = (97 /0,)u > |

the gas cools in expansion. Outside the inversion curve, agyr < 0. and so the gas warms up
in expansion. Above a certain temperature, 7;, known as the inversion temperature, the

gas 1s always outside the mversion curve, and thus 1t 1s always warnied i Joule-Thomson

expansion. For most gases, T; is above room temperature.
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H=H
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H= 8y
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€
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H=H,
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Pressyre P ——P»

Fig. 5.— Inversion curve in the T-p plane is shown in bold. The solid lines are isenthalps
(=curves of constant enthalpy. H(p.T') = Const). Inside the inversion curve, 7' increases
with p along isenthalp. while outside it decreases.

Calculation of temperature change during Joule-Thomson expansion is done using

P2 /AT
P1 dp H

This is difficult to evaluate analytically, since non-ideal gases often do not have a simple
relation between T and p. But this equation can easily be solved numerically.
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