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Chapter-3

Two shit interference expermment with photons, atoms and particles; linear superposition
principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for

non-relativistic particles: Momentum and Energy operators; stationary states; physical
interpretation of a wave function, probabilities and normalization; Probability and
probability current densities 1n one dimension. (10 Lectures)

Q:
Describe the double-slit experiment using an clectron beam. Show that
the results of this experiment can be explained only if the uncertainty
principle 1s assumed to be vahid.

Ans:

that if we employ a detector that can tell which slit an electron goes through,
the interference pattern disappears. We shall now see that the uncertainty
principle ensures that this is exactly the case.

Figure 5.5 shows a schematic diagram of the double-slit experiment. The
distance between the slits 4 and B 15.d and the distance between the slits and
the screen is D.
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Figure 5.5 Double-slit experiment with a detector.

The distance between successive maxuna on the screen would be

AD
= — 5.33
- (533)
where A 1s the de Broglie wavelength of the electron, that is,
‘l = E
P

p being the momentum of the electron.
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The detector is placed just behind the slits. It is a nucroscope along with
a illumnation device. In order that the microscope tells which slit the electron
came through, it should measure the y-component of the electron’s position to
a precision better than half the distance between the slits. That is
d
B et
Ay 5
In order to detect the electron, an illununation photon must bounce off the
electron into the microscope. This will impart to the electron a momentum in
the y-direction and thereby introduce an uncertainty Ap, in the y-component of
the electron’s momentum. According to the uncertainty principle

i
Ap, = —
Py Ay
2h
‘REa

As a consequence, the direction of motion of the electron becomes uncertain
by an angle A8 given by
Ap. 2
M 2 - 2o (A
P d(h/A) nmd
This angular uncertainty produces an uncertainty in the position of the electron
on the screen given by

AD
Ay =DAB 2z —
Y wd

This 1s comparable with f3, the distance between sueccessive maxima of the
mnterference pattern (see Equation 5.33). Thus, the uncertainty principle leads
to the conclusion that if an attempt 1s made to deternune through which slit the
electron passes, the interference pattern disappears. Since this is known to be
correct experimentally, the uncertainty principle must be true.

Q: Write the time-dependent Schréodinger equation for a particle of mass m
moving under a force which is derivable from a potential V(r, t). What is the
physical interpretation of the wave function? Why should the wave function be
normalized?

Ans: i _ i o
According to classical mechanics, the total energy of the particle would be given
by

2
E=2 4y, (6.15)
2m
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Since V" does not depend on E or p, the above discussion for the free particle
suggests that the wave function should satisty

= If}?
 2m ]
so that, the Schrédinger equation generalizes to

EW¥ =

f 2?2 )
i S W = PV v | W)
dt | 2m ) (6.16)

(Time-dependent Schrodinger equation)

The operator on the right-hand side 1s called the Hamiltonian operator and
1s denoted by the symbol H:

172

WV
——+V(x.1) 6.17)

(Hamiltonian operator)

H:_

The name follows from the fact that in classical mechanics the sum of the
kinetic and the potential energies of a particle is called its Hamiltonian.

Interpretation: i : i
If a particle 1s described by a wave function W (r, 1), then the
probability of finding the particle, at time ¢ within the volume clement
dr = dxdydz about the point r = (x, ), 2) is
P(r, ) dv=|¥(x. D dr =¥ (r. D¥(x 1) dr (6.18)
The quantity
Pr. )= ¥ O =¥ (r. ) V(. 1) (6.19)
1s obviously called the position probability density. Since the probability of

tinding the particle somewhere at tume f 15 unity, the wave function is chosen
to satisfy the normalization condition

j| W) dr=1 (6.20)

where the integral extends over all space. The wave functions for which the
above integral exists are said to be square integrable.

Q: What is the Hamiltonian operator? Show that the conservation of probability
implies that the Hamiltonian is an Hermitian operator.
Ans:
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The operator on the right-hand side 1s called the Hamiltonian operator and
1s denoted by the symbol H:

I 2
H=—ﬁ v
2m

+V(r. 1) 6.17)

(Hamiltonian operator)

The name follows from the fact that in classical mechanics the sum of the
kinetic and the potential energies of a particle 1s called its Hamiltonian.

In terms of H, the Schrodinger equation can be written as

d'¥
ih— = HY¥ 6.29
> (6.29)
The complex conjugate of this equation 1s
g\, *
—ih = (HY) (6.30)
ot
Using these equations, we can write
. PP P )
9 [ wopdr = ﬂl{h— % w4
dt \ dt or )

- (m)-lj [WHEY) — ¥ (HP)*]dr
Since the left-hand side 1s zero. we obtain

J"JH* (H'W)dr = J’{HW)**P dr (6.31)

Operators which satisfy this condition are called Hermitian operators. Thmss

Q: Define the position probability density and the probability current density in
the context of a quantum mechanical wave function. Obtain the equation
connecting these quantities and give the physical interpretation of this
equation.
Ans: ) i ) i

If a particle 1s described by a wave function W (x, 1), then the

probability of finding the particle, at tume ¢ within the volume clement

dr = dxdydz about the point r = (x, ), 2) is

P(r, §) dv=|¥(r. D dr =¥ (v, D¥( 1) dr (6.18)
The quantity

P, )= ¥ O =¥ (r. ) Y(r. 1) (6.19)
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is obwviously called the position probability density. Since the probability of
tinding the particle somewhere at tume ¢ 1s unity, the wave function is chosen
to satisfy the normalization condition

j| W)l dr=1 (6.20)

Probability Current Density

It says that the rate of change of the probability of finding the particle in a
volume V is equal to the probability flux passing through the surface S bounding
V. It is reasonable, therefore, to interpret the vector j(r, t) as probability current
density Since this equation is true for any arbitrary volume, we have

% P(r, o) +V-j(r,1)=0 (6.32)

This equation has the fanmliar form associated with the conservation of
matter in a flud of density P and current density j in a medium in which there
are no sources or sinks. This is called the equation of continuity.

If V-] is zero in a state, then for that state the probability density is constant
in time. Such states are called stationary states.

The probability current density (6.26) may also be written as

i

. I ]
jlr 1) = Re[‘l—“ ~yy (6.33)

where ‘Re’ indicates ‘real part of’.

It may be noted that the operator (i/im)V represents p/m, that is, the
velocity v of the particle. Thus, j corresponds to the product of the probability
density P and the velocity v:

=Py
Thus, 1t 1s appropriate to interpret j as a probability current density.
Q:
(a) What is meant by the expectation value of a dynamical variable?
How 1s it obtamed mathematically?

(b) Show that the expectation value of a physical quantity can be real
only 1if the corresponding operator 1s Hermitian.

(c) Show by actual integration that (p, } is real.

Ans:
the expectation value of a quantity, which is the average value of the
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measurcments of the quantity performed on a very large number of independent
identical systems represented by the wave function V. Or, equivalently, it 1s the
average of a large number of measurements on the same svstem.

First, let us consider the measurement of the position of the particle. Since
P(r.0y=%" (r. ) W(r. {) is interpreted as the position probability density at the
point r at the time ¢, the expectation value of the position vector r 1s given by

(r) = I r P(r. Hdr

- j ¥ e ) r W (r. dr (6.34)
where W (r, f) 1s normalized. This equation 1s equivalent to the threc equations
(x) = W' 2 W dr (6.353)
(y) = : ¥ yWdr (6.35b)
(2= [¥ ¥ ar (6.35¢)

The expectation valuc 1s a function only of the time because the space
coordinates have been integrated out. Further, the expectation value of a
physical quantity 1s always real. Note the order of the factors in the integrand—
the vector r (or each of x. v. z) has been sandwitched between ¥* on the left
and ¥ on the right. This is immaterial at this stage but is chosen for recason
which will be clear shortly.

The expectation value of any quantity which is a function of r and ¢ would
be

(£(e.0)= [¥*@.0 .0 ¥, 0 dr (6.36)
Suppose, the dynamical state of a particle is deseribed by the normalized wave
function W (r, 1). Let A(r, p, 7) be a dynamical variable representing a physical
quantity associated with the particle. We obtamn the operator A (r, —ihV, 1) by

performing the substitution p — —i4 V. and then calculate the expectation value
of 4 from the expression

(4)= I‘F*{r, f) Alr, —inV, 1) ¥(x, 1) dr (6.43)

Since the expectation value of a physical quantity is always real, 1.e.,
(A4)}* = (A4), it follows that the operator A must satisfy
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J‘P*ﬁ‘}‘d::j(.i‘ﬂ* W dr (6.44)

Thus, the operator associated with a dynanmical quantity must be Hermitian.

Q: State and prove Ehrenfest’s theorem.

Ans: According to Ehrenfest’s theorem, the equations of motion of the
expectation values of the position and momentum vectors for a wave packet
are formally identical to Newton’s equations of classical mechanics. That is,

E(ﬂ:@

a1 m [:6.45}
d
E<P>:_<vrf> | (6.46)

In order to prove (6.45), let us first consider the expectation value of the
x-component of the position vector r. Assuming that the wave function V¥
representing the wave packet is normalized to umty, we have

(x) = J ¥ XY dr
The time rate of change of {x) is

d d "
E{x) = EJ"!’ ¥ dr

L =%
= j"{‘*xa_—qjdr + JHP xWdr
dt dt
The right-hand side can be transformed by using the Schrédinger equation
(6.22) and its complex conjugate (6.23). We obtain

d 1 ?2 Vs ol & . |
T == Jwx —2’—\?31}4 V‘FJdr—J[——?E‘P’F+V‘P* ¥ dr
t ih . 2m ‘

: 2m

_ %J' [¥*r (V) — (V2¥*)x ¥] dr (6.47)

Let us consider the second part of the integral. Using Green’s first identity,
we obtain

| (v2wrpewar = L YP(V¥*)ds — [ (V9 VEw)dr

Since the volume under consideration is the entire space, the surface S in the
first integral on the right is at infimity. Hence, this integral is zero because the
wave function vanishes at large distances. Therefore,
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| Penawdr = — [ (VEH) V) de
Using Green’s first identity again, we get‘
| W) Vw)dr = —_'S VIV EW)dS + [ WF VA ¥) dr
The surface integral again vanishes. Thus,
[ v wrwar= [ wr vaw) ar
Substituting this back into (6. 4’?) we obtain
fis ﬂjw[ V2P _ V2xW)dr

2m

It can be easily shown that

Vi) =xV¥ + za_w
dx
Therefore,
i(ﬂ :_ﬂj \p ¥ dr
dt M ox
\
— _jan [_m iJ
d
(Px)
m

Similarly, we can prove that
d oy B) d (P

dt ) m ot ™

These three equations are the three components of Equation (6.45), which
was to be proved.

Let us calculate the time rate of change of the expectation value of the

x-component of the momentum of the particle We have

4 (py ) =—ih —j‘l’*

dr
3 v IPE P
W 2 Wl o
m“ T J 3 B
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Using the Schrodinger fl]l]&tiﬂﬂ (6.22) and its complex conjugate (6.23) to
replace ¥ /dt and V¥ /dr, respectively, we get

2
i{ ——J‘P*— ——v ¥+ Py d:-+_[[—h—v'-‘ip*+wp*la—w dr
dt L 2m dx
h? > OF )
i % P T R e b
== {w[v J(vtp) aﬁj { )=V |dr

Usig Green’s second 11:1a:1’1t1t3fr the first integral on the right is zero because ¥
and r}‘"{'f’r}’x vanish at large distances. The second integral gets simplified as

<Je

V—|d1 _[w*—tp dr

Thus,

Smmilarly we can prove that
d v\ d _Jaw\
2 ()= %f-g{pz}——(w

These three equations are the three components of Equation (6.46). Thus, the
proof of Ehrenfest’s theorem is complete.

Q: Show that the wave packet having the minimum uncertainty product has a
gaussian shape.

Ans: the uncertainty product is minimum when the following two conditions are
satisfied:

AY = gBY (6.56)

and J'w*(ﬁﬂ + BA)Wdx = 0 (6.57)
Using Equation (6.49). Equation (6.56) gives

x—(x})¥=@

Rearranging, we get the differential equation

da¥
B La iR
de (p)
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¥ Ta i

il S Y RS o o7
= | L =)+ a)]
which on integration gives

W) =N Exp{z%;ﬁ (x—(x)) + %1 (6.58)

where N is an arbitrary constant.
Equation (6.57) gives
| wrapwax + [Broravar = o

Using (6.56), this becomes

By P ALY dx=0
[ﬂt EEJJ-

Since the integral is not zero, this yields

2o A sy
P
which requires that @ be purely imaginary. Further, since the integral of |¥ |
should converge. @ must be negative imaginary. In order to determine o, we
require
[ e=(x))° 9P dx = @Axy
Evaluating the mtegral and subst:.tutmg the value of & in (6.58), we obtain

(x—{x))’ ng;}ﬂq.

= WA = 6.59
LR (6:59)

W(x) =N exp T

which is a gaussian function. Thus we find that the wave packet having the
minimum uncertainty product has a gaussian shape.

Q: _ L
Show that the eigenvalues of the time-independent Schridinger equation
Hy = Ey are real.
Ans:
. Let E be the eigenvalue corresponding to the eigenfunction .
Then _ ) ) _
Hy = Ey

Since the Hamiltonian H 1s a Hermitian operator, we have from Equation (6.31),
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I v Hy dr = j (Hy) v dr

These equations give
J v Evydr = J E" v wdr

or (E—f}j W ydr =0
Since the probability integral _[ W wdr is necessarily positive, it follows that

E=g

Hence the eigenvalues of H are real.

Q: What are stationary states? Show that the probability current density is
divergence less for such states.

Ans:

An immportant consequence of the reality of eigenvalues is that the position

probability density corresponding to the states represented by ‘separable’ wave
functions (6.64) is independent of time:

P(r, 1) =¥ (r, 1) ¥(r, 1)

=y e y@e

AV
Therefore, these states are called stationary states. This name 1s further justified
by the fact that the expectation value of the total energy operator in a state

described by the wave function (6.64) is equal fo the energy eigenvalue of that
state for all time if the wave function 1s normalized:

| %@ 0B @ ndr

—iEt/h

J J 'P* (r) GE/ Hy(r) o Eh g
= [V @EV) dr

= E[y’ @)y (@) dr
=E

Q: Show that the eigenfunctions corresponding to distinct eigenvalues of
the Hamiltonian are orthogonal.
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Ans:
Let y; and w, be the eigenfimetions corresponding to the eigenvalues
E; and E,. respectively. Then

Hyn = Exyie (6.67)
and Hy,, = E,y, (6.68)
Taking complex-conjugate of (6.68) and remembering that E, 1s real,
(Hw,)" = EaW (6.69)
Premultiplying (6.67) by y, and postmultiplying (6.69) by w;, we obtain
v (HW) = Exy v (6.70)
and (Hy) ¥ = EVa Vi (6.71)

Subtracting (6.71) from (6.78) and integrating, we obtain

(B~ E) [ b v dr = [ [Wi(HY) - Hy,) yildr

Since H is Hermmtian, the integral on the right-hand side is zero. Therefore,

(Ek i3 E.I'J}J ]al["r:: Wkdr =1
Since E; # E,, this gives

Iwi Y, dr =10

This shows that the eigenfunctions are orthogonal.

Q: What are the continuity and boundary conditions that must be satisfied
for a wave function to be physically acceptable?
Ans: In order for a wave function to be physical acceptable, it must satisfy
certain continuity and boundary conditions. We mention these below:
1) the wave function and its gradient be single-valued, finite and continuous
at every point in space.
2) The wave functions are bounded at large distances in all directions.
3) If there is an infinite potential step at a surface, then the wave function at
the surface is zero and the component of the gradient of the wave
function normal to the surface is not determined.

Q: What are momentum eigenfunctions?
Ans:
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Let us now operate on the eigenfunctions exp (ikx) and exp (- 7kx) with the
momentum operator

_p 171 d‘_:u;_
We have :
S @™y = nk(e™) (6.82)
dx
mﬂ B
—if i(e'“’“}= ~hike (e ™) (6.83)
= _

We find that the fimctions exp (74x) and exp (—ikx) are cigenfunctions of the
momentum operator with the cigenvalues Ak and — Ak, respectively. Thus, these
functions are not only encrgy cigenfunctions, but also momentum eigenfunctions.




