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Chapter 2
Superposition of two perpendicular harmonic oscillations

Superposition of Two Perpendicular Harmonic Oscillations: Graphical and

Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses. (2
Lectures)

Q: derive an expression for superposition of two perpendicular harmonic

oscillations having equal frequencies using analytical and graphical method.

Ans:
Suppose a particle moves under the simultaneous influence of two per-
pendicular harmonic oscillations of equal frequency, one along the x-axis,
the other along the y-axis. Let 4; and Az respectively be the amplitudes
of the x and y oscillations. For simplicity. let us assume that the phase
constant of the x oscillation is zero and that of the y oscillation is 8, so
that 8 is the phase difference between them.! There is no loss of generality
in doing so. Thus, the two rectangular SHMs can be written as

x = A cos wt (2.24)
y = Az cos (wt+-3) (2.25)

where x and y are the displacements along two mutually perpendicular
directions. The resulting motion of the particle can be obtained as follows:

(a) Analytical Method
The path followed by the particle can be traced by eliminating time ¢ from

Eqgs (2.24) and (2.25) so that we are left with an expression involving only
x and y and the constant 8. Expanding the argument of the cosine in

Eq. (2.24), we have

]'E— = CO0S w! cOs &— sin cwr sin &

But from Eq. (2.24), cos wt = x/A; and, therefore, sin wf = ( 1— 4
Therefore,
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1
5= four( )" w0
x l ‘_i 12
or (A:““"A:) (' .ﬁ) s
Squaring both sides we have
—’5;--;. i‘ﬂ,manm* 5 (2.26)

This is the general equation of an ellipse whose axes are inclined to the
coordinate axes. Hence, the path followed by the particle; which is subjected
to two rectangular SHMs of equal frequencies, is, in general, an ellipse.

Let us consider a few special cases :
(i) 3= 0. In this case, Eq. (2.26) reduces to
x’ y’ 2xy

= 0
L | B TV S
Az 2 o
or ( y Ay ) =
This represents a pair of coincident straight lines, y = A2 x, having a

Ay
positive slope A2/4: and passing through the origin, The resultant mation
is rectilinear and takes place along a diagonal of a rectangle of sides 24,
and 242 such that x and y always have the same sign, both positive or
both negative (Fig 2.5). The direction of motion can be casily determined
from the defining Eqs. (2.24) and (2.25) by setting 3 == 0,
x = A cos wt

y = Az cos wt

which immediately give y = 4% x, the equation of the straight line of

Az 2
slope e At time 7 = 0, we have, x = A1, ¥ = A2 s0 that the particle

is at P at ¢t = 0 (see Fig 2.5). As time passes the cosines begin to
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Fig. 2.5 Superposition of two perpendicular SHM s of the same frequency for
phase difference 8 = 0

decrease until x and ¥ become zero when wt = w/2, The particle moves
from P to O. After this time, x and y become negative and at time
when wt = m, x becomes — A and y is —42. The particle moves from
O to P'. After this the particle retraces its path., The particle continues
to vibrate along the straight line P O P‘. This represents what in optics
is called a linearly polarized vibration.

(il) 3= —;L In this case, Eq. (2.26) reduces to

x2 2

which is the equation of an ellipse whose principal axes lie along the x
and y axes, as shown in Fig. 26. The particle moves in an elliptical path,
The direction of its motion can be determined from the defining equations
(2.24) and (2.25) with & = /2,

x = A1 cOs wrt

ki3
v = Az cos ( mH-—I- )= — A2 sin wr
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From these equations, the equation of the ellipse, obtained above,
immediately follows. At time r=0, x= 4, and y=0, so that the particle is
at point P at r = 0 (see Fig. 2.6). As time  begins to increase from zero,
x begins to decrease from its maximum positive value A; and y
immediately begins to go negative. At a time when wt = %2, x becomes
zero and y equals A;. The particle moves from P to Q during this time.

The subsequent motion of the particle is indicated by arrows in the
diagram. The particle traces out an ellipse in the clockwise sense, This

Fig. 2.6 Superposition of two perpendicular SHMs of the same frequency and
phase differences 8 =n/2
represents what in optics is called the right-handed elliptically polarized
vibration. The rotating electric field vector of the electromagnetic wave is
always confined in one plane, with its tip tracing out an ellipse in the
lockwise directi
If, in addition, A1 == A2 == A, the ellipse degenerates into a circle
B = £
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Fig. 2 7 Superposition of two perpendicular SHMs of the same frequency and
phase difference 8 = «

Thus, two harmonic oscillations, at right angles to each other, of equal
amplitudes and equal frequencies but with phases differing by w|2 are
equivalent to a uniform circular motion, the radius of the circle being equal
to the amplitude of either oscillation. Conversely, a uniform circular motion
can be resolved into two SHMs, at right angles to each other, their ampli-
tudes being equal while their phases differ by m|2 (see also Sec, 1.9, Ch. 1).

(iii) 38 = =, In this case, Eq. (2.26) becomes

X0 L Rye xy
Al +ﬂ-+ A4z v

2
or (y+fx) = ()

This represents a pair of coincident straight lines, y =— "‘% x, having

a negative slope —A2fA: and passing through the origin. The ellipse
degenerates into a straight line, as shown in Fig. 2.7,
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V) 8 —"-’5'1 T this cuse; we have

X == A cos wt
3= i
y=Azcos(mt+ -i~~)=&smmt

x2
yin Sl

We have an ellipse of the same, form as in case (ii), but the motion is
now counfer~clockwise. In optics, such a vibration is called the lefi-handed
elliptically polarized vibration.

The sequence of motions for a few values of 3in the range 0 to 27 is
illustrated in Fig. 2.8. Notice that the resulting motion is the same for
8 = 0 or 2r. This is expected since for 8 = 0 or 27

y = Az cos (wt+0) = A2 cos (wt-+27) = A3 cos w!

which give

D; N2
o g I .
T/ n/2
Er’ S
7 A
l.:_as_—_d.faﬂ‘ ———— w—— JM’ . J
I T G=om

Fig. 2.8 Superposition of two perpendicular SHMs of the same frequency for
various phase differences
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(b) Graphical Methad

The above results can also be obtained graphically by a double application
of the rotating-vector technique. This is done as shown in Fig 2.9. Draw
two circles of radii 41 and 42, the amplitudes of the two perpendicular
SHMs. The circle of radius 4; defines the SHM along the x-axis. Let
1P be the position of the rotaling vector at a certain instant of time
t. The projection of OiP; on the x-axis (O1N1 == OX = x) gives the
instantaneous displacement,

x = A; cos w!
The circle of radius A: defines the SHM along the y-axis. Let 02P: be
the position of the rotating vector attime 7. The projection of 02P2 on
the )-axis (OyN2 = OY == y) gives the instantaneous perpendicular dis-
placement

y = Az cos (wi+3)

y - Qxis
A
Wwt+§)
+ Ay
PZ - 3 5
Ay y l
= 7 0-,..})( M".’ X -axis
< |
-Aj -

Big. 29 Geometrical representation of the superposition of two SHMs at right
' angjes to cach other
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If the particle has SHM only along the x-axis, its displacement at
time:# wonld be x = OX where X is the projection of P on the x-axis.
On the other hand, if the particle has SHM only along the y-axis, its
displacement would be y = OY, where Y is the projecticn of P2 on the
y-axis. Consequently, if the particle was subjected to both the SHMs
simultaneously, its resultant displacement at time ¢ would be OP. Point
P is the intersection of perpendiculars drawn from P; and P: on the x and
y axes respectively, The two displacements together describe the
instantaneous position of the point P with respect to the origin O that lies
at the centre of a rectangle of sides 24, and 242, The path followed by
point P, as time passes, gives the resultant motion. We shall now
construct the resultant motion for a few special values of the phase
difference 3.

(i) 8 = 0: In this case, the two perpendicular motions are
x = A cO8 w!
y = Az 008 wt

The application of the above method to this particular case is shown in
Fig. 2.10. Each reference circle is divided into the same number of equal
parts, say, eight. Since the frequency of the two SHMs is the same,
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Fig. 2.10 Superposition of two perpendicular SHMs of the same frequency and
zero phase difference

each of these parts of the reference circles will be described by each
rotating vector in the same time which is one eighth of a period (i.e. 7/4a).
The positions of the points Py, P2, on the reference circles, are shown at a
number of instants separated by one-eighth of a period. The points are
numbered 0, 1, 2. 8, beginning with ¢ = 0, when O,P; (see Fig. 2.9) is
parallel to the x-axis and O2P: parallel to the y-axis, so that the phase
difference 8 is zero. The projections from these corresponding positions
of P and P: then give us a sct of intersections, as shown in Fig. 2.10,
representing the instantenecous positions of the point P (see Fig. 2.9)
as it moves within the rectangle. The locus defined by these points is a
straight line AOB with a positive slope.
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(i) 3 = 7:'— The application of the rotating vector method to this

particular case is shown in Fig. 2.!1. The positions of the points P, and P,
on the two reference circles, are shown at a number of instants separated by

one-eighth of the period of each component motion. The points are
numbered 0, 1, 2, ..., 8 in sequence, starting with t = 0 when O\P: (see

Fig. 2.9) is parallel to the x-axis, and O:P: is at angle 8 = 14 or 45°

measured in counterclockwise sense, from the y-axis, so that the phase
difference 8is =/1. The projections of thesc corresponding positions of

P1 and P: give us a set of points of intersection, as shown in Fig. 2.11,
These intersections represent the instantaneous positions of the point P as

it moves within the rectangle of sides 24, and 24:. The locus of these
points is an inclined ellipse, described in the clockwise sense as shown,
The exact shape of the curve can be ascertained by dividing the reference

circles into 16, 32 ... etc. parts instead of 8,

Fig. 2.11 Superposition of two perpendicular SMSs of the same frequency and a
phase difference of = /4.

The resulting motion for other values of the phase difference can be
similarly constructed. The sequence of motions is shown in Fig. 2.8,
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Q: derive an expression for superposition of two perpendicular harmonic
oscillations having different frequencies of ratios 1:2.
Ans:

When the frequencies of the two perpendicular SHMs are not equal, the
resulting motion becomes more complicated. The patterns, that are traced
by a particle which is subjected simultaneously to two perpendicular SHMs
of different frequencies, are known as Lissajous figures, after J.A. Liusnjuun
(1822-1880) who made an extensive study of these motions. - _~—

Let us first consider the case when the frequency wz of the » oscillation is
twice the frequency w the x oscillation, i.e. w1= @ and w2 = 2w. The two
SHMs are then given by

X = Ay c08 wt (2.27

y = Az 008 (21 +3) (2.28)

where A1 and A2 are their respective amplitudes and 3 is the phase
difference between them.

The shape of the Lissajous figure can be obtained either by analytical or
graphical method. In the analytical method, we find the locus of the
instantaneous particle positions by eliminating time ¢t from the above
equations. Expanding the argument of the cosine in Eq. (2.28), we have

—i=muhlml—ﬁn2ﬂtﬁnl

= (2 cos? wi—1) cos 3—2 sin wf cos wt sin &

But from Eq. (2.27), coswt = ;—‘ and sin wt = ( - f ) . . Therefore,
1

Rearranging we have

(2 4em0) B = F (155

which, on squaring and upon simplification, reduces to

(‘i_'i'mia)-]-dt (A' =] - -——mﬁa)mu (2.29)
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This is an equation of the fourth degree which, in general, represents a
closed curve having two loops. For a given value of 3, the curve corres-
ponding to Eq. (2.29) can be traced using the knowledge of coordinate
geometry. Equation (2.29) reduces to a particularly simple form for
8 = (. Setting cos 3 = 1 in this equation, we have

b3 = il’.(l'_ ..!_.)..
(A:'H)'i'e!! a—rt—gm)—
¥y 2:3’_
(x“‘z‘r) v

This represents two coincident parabolas with their vertices at (0, —42) as
shown in Fig. 2.12, the equation of each parabola being

o 2
gk e |

e ,z-_43_0+4,)
242
Y
|
IS L. e
|
| |
- | x
A1| \“/ |A1
! |
e > —
A2

Fig. 2.12 Superposition of two perpendicular SHMs with frequencies in the ratio
1: 2 and phase difference equal to zero
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The analytical method becomes very cumbersome for values of 3 other
than zero. In such cases, the resultant motion can be constructed quite
conveniently by the graphical method. Figure 2.13 shows how the
rotating vector technique is used to obtain the shape of the
Lissajous figure when 8 = m/4 and w2 = 2w;. The rotating vector 02P;
subtends an angle 7/4 at time ¢ =0 with the y-axis so that the y oscillation
has an initial phase of #/4, but the rotating vector 012 is along the x-axis
at this instant of time, so that the x oscillation has no initial phase ; the

phase difference between them is thus =/4. The y oscillation is
twice as fast as the x oscillation. Therefore, we choose to divide the

circle of radius 4z into 8 equal parts and the circle of radius 4; into 16
equal parts. During the time the vector O2P; describes one-eighth of its

circle, the vector 01P; describes only one-sixteenth of its circle. During one
complete cycle of w2 we go through only half a cycle of w1 and the points
on the reference circles are marked accordingly. One must, of course, go
through a complete cycle of @2 in order to obtain one complete period of
the combined motion.

The combined motion corresponding to other phase differences can be
similarly constructed. Figure 2.14 shows the sequence of these motions
for values of 8 in the range 0 to =,
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Fig. 2.13 Superposition of two perpendicular SHMs with frequencies in the ratio
1 : 2 and phase difference equal to =/4.
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Fig. 2. 14 Lissajous figures : wz=2w; with various initial phase differences






