

Mathematical Physics - I
Chapter - 2
Vector Algebra

Support us by Donating at the link "DONATIONS" given on the Main Menu

Even the smallest contribution of you will Help us keep Running

Chapter - 2 Vector Algebra

Vector Algebra: Properties of vectors. Scalar product and vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields. (6 Lectures)

LAWS OF VECTOR ALGEBRA. If A, B and C are vectors and m and n are scalars, then

$$I. \quad \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

2.
$$A + (B+C) = (A+B) + C$$

$$3. mA = Am$$

$$4. m(nA) = (mn)A$$

5.
$$(m+n)A = mA + nA$$

$$6. m(\mathbf{A} + \mathbf{B}) = m\mathbf{A} + m\mathbf{B}$$

Commutative Law for Addition

Associative Law for Addition

Commutative Law for Multiplication

Associative Law for Multiplication

Distributive Law

Distributive Law

Q1:

If \vec{a} and \vec{b} be two unit vectors and \vec{a} be the angle between them, then find the value of \vec{a} such that $\vec{a} + \vec{b}$ is a unit vector.

Sol: Let

 $\overrightarrow{OA} = \overrightarrow{a}$ be a unit vector and $\overrightarrow{AB} = \overrightarrow{b}$ is another unit vector and α be the angle between \overrightarrow{a} and \overrightarrow{b} .

If $\overrightarrow{OB} = \overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$ is also a unit vector then, we have

$$|\overrightarrow{OA}| = 1$$

 $|\overrightarrow{AB}| = 1$
 $|\overrightarrow{OB}| = 1$

OAB is an equilateral triangle.

So, each angle of \triangle *OAB* is $\frac{\pi}{3}$

Hence
$$\infty = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

Q2:

If A and B are (3, 4, 5) and (6, 8, 9), find AB.

Sol:

$$\overrightarrow{AB}$$
 = Position vector of B - Position vector of A
= $(6\hat{i} + 8\hat{j} + 9\hat{k}) - (3\hat{i} + 4\hat{j} + 5\hat{k}) = 3\hat{i} + 4\hat{j} + 4\hat{k}$

DOT PRODUCT

$$\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta, \qquad 0 \le \theta \le \pi$$

PROPERTIES OF DOT PRODUCT:

Suppose A, B, and C are vectors and m is a scalar. Then the following laws hold:

- (i) $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$ Commutative Law for Dot Products
- (ii) $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$ Distributive Law
- (iii) $m(\mathbf{A} \cdot \mathbf{B}) = (m\mathbf{A}) \cdot \mathbf{B} = \mathbf{A} \cdot (m\mathbf{B}) = (\mathbf{A} \cdot \mathbf{B})m$
- (iv) $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$, $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$
- (v) If $\mathbf{A} \cdot \mathbf{B} = 0$ and \mathbf{A} and \mathbf{B} are not null vectors, then \mathbf{A} and \mathbf{B} are perpendicular.

SOME USEFUL RESULTS

$$\hat{i} \cdot \hat{i} = (1) (1) \cos 0^{\circ} = 1$$
 Similarly, $\hat{j} \cdot \hat{j} = 1$, $\hat{k} \cdot \hat{k} = 1$
 $\hat{i} \cdot \hat{j} = (1) (1) \cos 90^{\circ} = 0$ Similarly, $\hat{j} \cdot \hat{k} = 0$, $\hat{k} \cdot \hat{i} = 0$

Q3: Prove

$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

Sol:

$$\vec{b} \cdot \vec{a} = \left| \vec{b} \right| \left| \vec{a} \right| \cos (-\theta)$$

$$= \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta$$

$$= \vec{a} \cdot \vec{b} \qquad \text{Proved.}$$

Q4: Find the angle between the face diagonals of a cube.

Sol:

The face diagonals \overrightarrow{A} and \overrightarrow{B} are

$$\vec{A} = 1\hat{x} + 0\hat{y} + 1\hat{z}; \quad \vec{B} = 0\hat{x} + 1\hat{y} + 1\hat{z}$$

So,
$$\Rightarrow \vec{A}.\vec{B} = 1$$

Also,
$$\Rightarrow \vec{A} \cdot \vec{B} = AB \cos \theta = \sqrt{2} \sqrt{2} \cos \theta \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$$

Q5: Find the angle between the body diagonals of a cube.

Solution: The body diagonals \overline{A} and \overline{B} are

$$\vec{A} = \hat{x} + \hat{y} - \hat{z}; \quad \vec{B} = \hat{x} + \hat{y} + \hat{z}$$

So,
$$\Rightarrow \overline{A}.\overline{B} = 1+1-1=1$$

Also,
$$\Rightarrow \vec{A} \cdot \vec{B} = AB \cos \theta = \sqrt{3} \sqrt{3} \cos \theta \Rightarrow \cos \theta = \frac{1}{3} \Rightarrow \theta = \cos^{-1} \left(\frac{1}{3}\right)$$

CROSS PRODUCT

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{a} \\ \vec{b} \end{vmatrix} \sin \theta \cdot \hat{\eta}$$

PROPERTIES OF CROSS PRODUCT

Suppose A, B, and C are vectors and m is a scalar. Then the following laws hold:

- (i) $\mathbf{A} \times \mathbf{B} = -(\mathbf{B} \times \mathbf{A})$ Commutative Law for Cross Products Fails
- (ii) $\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$ Distributive Law
- (iii) $m(\mathbf{A} \times \mathbf{B}) = (m\mathbf{A}) \times \mathbf{B} = \mathbf{A} \times (m\mathbf{B}) = (\mathbf{A} \times \mathbf{B})m$
- (iv) $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$, $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$
- (v) If $\mathbf{A} \times \mathbf{B} = 0$ and \mathbf{A} and \mathbf{B} are not null vectors, then \mathbf{A} and \mathbf{B} are parallel.
- (vi) The magnitude of A × B is the same as the area of a parallelogram with sides A and B.

USEFUL RESULTS:

Since \hat{i} , \hat{j} , \hat{k} are three mutually perpendicular unit vectors, then

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

$$\hat{i} \times \hat{j} = -\hat{j} \times \hat{i} = \hat{k}$$

$$\hat{j} \times \hat{i} = -\hat{i} \times \hat{j}$$

$$\hat{j} \times \hat{k} = -\hat{k} \times \hat{j} = \hat{i}$$
and
$$\hat{k} \times \hat{j} = -\hat{j} \times \hat{k}$$

$$\hat{k} \times \hat{i} = -\hat{i} \times \hat{k} = \hat{j}$$

$$\hat{i} \times \hat{k} = -\hat{k} \times \hat{i}$$

Q6: Find the area of a parallelogram whose adjacent sides are i - 2j + 3k and 2i + j - 4k.

Sol : Vector area of parallelogram =

$$= (8-3)\hat{i} - (-4-6)\hat{j} + (1+4)\hat{k} = 5\hat{i} + 10\hat{j} + 5\hat{k}$$
Area of parallelogram = $\sqrt{(5)^2 + (10)^2 + (5)^2} = 5\sqrt{6}$
Ans.

Q7: Find the components of the unit vector $\hat{\mathbf{n}}$ perpendicular to the plane shown in the figure.

Sol: The vectors \overrightarrow{A} and \overrightarrow{B} can be defined as

$$\overrightarrow{A} = -\hat{x} + 2\hat{y}; \quad \overrightarrow{B} = -\hat{x} + 3\hat{z} \Rightarrow \hat{n} = \frac{\overrightarrow{A} \times \overrightarrow{B}}{\left| \overrightarrow{A} \times \overrightarrow{B} \right|} = \frac{6\hat{x} + 3\hat{y} + 2\hat{z}}{7}$$

Q8:

Show that
$$|\mathbf{A} \times \mathbf{B}|^2 + |\mathbf{A} \cdot \mathbf{B}|^2 = |\mathbf{A}|^2 |\mathbf{B}|^2$$
.

Sol:

$$|\mathbf{A} \times \mathbf{B}|^2 + |\mathbf{A} \cdot \mathbf{B}|^2 = |AB \sin \theta \mathbf{u}|^2 + |AB \cos \theta|^2 = A^2 B^2 \sin^2 \theta + A^2 B^2 \cos^2 \theta$$
$$= A^2 B^2 = |\mathbf{A}|^2 |\mathbf{B}|^2$$

Q9: Determine a unit vector perpendicular to the plane of A = 2i - 6j - 3k and B = 4i + 3j - k.

Sol: A x B is a vector perpendicular to the plane of A and B.

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix} = 15\mathbf{i} - 10\mathbf{j} + 30\mathbf{k}$$

A unit vector parallel to $\mathbf{A} \times \mathbf{B}$ is $\frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|} = \frac{15\mathbf{i} - 10\mathbf{j} + 30\mathbf{k}}{\sqrt{(15)^2 + (-10)^2 + (30)^2}} = \frac{3}{7}\mathbf{i} - \frac{2}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}$

Q10: Prove the law of sines for plane triangles.

Sol: Let a, b and c represent the sides of triangle ABC as shown in the adjoining figure:

then a+b+c=0. Multiplying by a x, b x and c x in succession, we find

i.e.
$$a \times b = b \times c = c \times a$$

i.e. $ab \sin C = bc \sin A = ca \sin B$
or $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.

SCALAR TRIPLE PRODUCT

$$\overrightarrow{A}.(\overrightarrow{B} \times \overrightarrow{C}) = \overrightarrow{B}.(\overrightarrow{C} \times \overrightarrow{A}) = \overrightarrow{C}.(\overrightarrow{A} \times \overrightarrow{B})$$

VECTOR TRIPLE PRODUCT

$$\overrightarrow{A} \times \left(\overrightarrow{B} \times \overrightarrow{C}\right) = \overrightarrow{B}\left(\overrightarrow{A}.\overrightarrow{C}\right) - \overrightarrow{C}\left(\overrightarrow{A}.\overrightarrow{B}\right)$$

Q11: Find the volume of parallelopiped if

$$\vec{a} = -3\hat{i} + 7\hat{j} + 5\hat{k}, \quad \vec{b} = -3\hat{i} + 7\hat{j} - 3\hat{k}, \text{ and } \vec{c} = 7\hat{i} - 5\hat{j} - 3\hat{k}$$

are the three co-terminous edges of the parallelopiped. Solution.

Volume =
$$\vec{a} \cdot (\vec{b} \times \vec{c})$$

= $\begin{vmatrix} -3 & 7 & 5 \\ -3 & 7 & -3 \\ 7 & -5 & -3 \end{vmatrix}$ = $-3(-21 - 15) - 7(9 + 21) + 5(15 - 49)$
= $108 - 210 - 170 = -272$
Volume = 272 cube units.

Q12: Show that the volume of the tetrahedron having \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} as concurrent edges is twice the volume of the tetrahendron having \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} , as concurrent edges.

Solution. Volume of tetrahendron =
$$\frac{1}{6} (\overrightarrow{A} + \overrightarrow{B}) \cdot [(\overrightarrow{B} + \overrightarrow{C}) \times (\overrightarrow{C} + \overrightarrow{A})]$$

= $\frac{1}{6} (\overrightarrow{A} + \overrightarrow{B}) \cdot [\overrightarrow{B} \times \overrightarrow{C} + \overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{C} \times \overrightarrow{C} + \overrightarrow{C} \times \overrightarrow{A}]$ [$\overrightarrow{C} \times \overrightarrow{C} = 0$]
= $\frac{1}{6} (\overrightarrow{A} + \overrightarrow{B}) \cdot (\overrightarrow{B} \times \overrightarrow{C} + \overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{C} \times \overrightarrow{A})$
= $\frac{1}{6} [\overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) + \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{A}) + \overrightarrow{A} \cdot (\overrightarrow{C} \times \overrightarrow{A}) + \overrightarrow{B} \cdot (\overrightarrow{B} \times \overrightarrow{C}) + \overrightarrow{B} \cdot (\overrightarrow{B} \times \overrightarrow{A}) + \overrightarrow{B} \cdot (\overrightarrow{C} \times \overrightarrow{A})]$
= $\frac{1}{6} [\overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) + \overrightarrow{B} \cdot (\overrightarrow{C} \times \overrightarrow{A})] = \frac{1}{3} \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C})$
= $2 \times \frac{1}{6} [\overrightarrow{A} \cdot \overrightarrow{B} \cdot \overrightarrow{C}]$

= 2 Volume of tetrahedron having \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} , as concurrent edges. **Proved**.

Q13: Evaluate

$$(2\mathbf{i} - 3\mathbf{j}) \cdot [(\mathbf{i} + \mathbf{j} - \mathbf{k}) \times (3\mathbf{i} - \mathbf{k})]$$

Sol: the result is equal to

$$(2i-3j) \cdot [i \times (3i-k) + j \times (3i-k) - k \times (3i-k)]$$

$$= (2i-3j) \cdot [3i \times i - i \times k + 3j \times i - j \times k - 3k \times i + k \times k]$$

$$= (2i-3j) \cdot (0 + j - 3k - i - 3j + 0)$$

$$= (2i-3j) \cdot (-i-2j-3k) = (2)(-1) + (-3)(-2) + (0)(-3) = 4.$$

Q14:

If
$$A = A_1 i + A_2 j + A_3 k$$
, $B = B_1 i + B_2 j + B_3 k$, $C = C_1 i + C_2 j + C_3 k$ show that

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$$

Sol:

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{A} \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$$

$$= (A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}) \cdot [(B_2 C_3 - B_3 C_2) \mathbf{i} + (B_3 C_1 - B_1 C_3) \mathbf{j} + (B_1 C_2 - B_2 C_1) \mathbf{k}]$$

$$= A_1 (B_2 C_3 - B_3 C_2) + A_2 (B_3 C_1 - B_1 C_3) + A_3 (B_1 C_2 - B_2 C_1) = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$$

Q15: Prove that

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}).$$

Sol: from previous question, we have

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$$

By a theorem of determinants which states that interchange of two rows of a determinant changes its sign, we have

$$\begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = - \begin{vmatrix} B_1 & B_2 & B_3 \\ A_1 & A_2 & A_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = \begin{vmatrix} B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \\ A_1 & A_2 & A_3 \end{vmatrix} = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A})$$

$$\begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = - \begin{vmatrix} C_1 & C_2 & C_3 \\ B_1 & B_2 & B_3 \\ A_1 & A_2 & A_3 \end{vmatrix} = \begin{vmatrix} C_1 & C_2 & C_3 \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix} = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

Q16: Find the volume of tetrahedron having vertices

$$(-\hat{j} - \hat{k}), \quad (4\hat{i} + 5\hat{j} + q\hat{k}), \quad (3\hat{i} + 9\hat{j} + 4\hat{k}) \text{ and } 4(-\hat{i} + \hat{j} + \hat{k}).$$

Also find the value of q for which these four points are coplanar. Sol:

Let
$$\vec{A} = -\hat{j} - \hat{k}$$
, $\vec{B} = 4\hat{i} + 5\hat{j} + q\hat{k}$, $\vec{C} = 3\hat{i} + 9\hat{j} + 4\hat{k}$, $\vec{D} = 4(-\hat{i} + \hat{j} + \hat{k})$
 $\vec{AB} = \vec{B} - \vec{A} = 4\hat{i} + 5\hat{j} + q\hat{k} - (-\hat{j} - \hat{k}) = 4\hat{i} + 6\hat{j} + (q+1)\hat{k}$
 $\vec{AC} = \vec{C} - \vec{A} = (3\hat{i} + 9\hat{j} + 4\hat{k}) - (-\hat{j} - \hat{k}) = 3\hat{i} + 10\hat{j} + 5\hat{k}$
 $\vec{AD} = \vec{D} - \vec{A} = 4(-\hat{i} + \hat{j} + \hat{k}) - (-\hat{j} - \hat{k}) = -4\hat{i} + 5\hat{j} + 5\hat{k}$

Volume of the tetrahedron = $\frac{1}{6} [\overline{AB} \ \overline{AC} \ \overline{AD}]$

$$= \frac{1}{6} \begin{vmatrix} 4 & 6 & q+1 \\ 3 & 10 & 5 \\ -4 & 5 & 5 \end{vmatrix} = \frac{1}{6} \left\{ 4(50-25) - 6(15+20) + (q+1)(15+40) \right\}$$

$$= \frac{1}{6} \left\{ 100 - 210 + 55(q+1) \right\} = \frac{1}{6} \left(-110 + 55 + 55q \right)$$

$$= \frac{1}{6} \left(-55 + 55q \right) = \frac{55}{6} (q-1)$$

If four points A, B, C and D are coplanar, then $(\overline{AB}\ \overline{AC}\ \overline{AD})=0$ i.e., Volume of the tetrahedron =0

$$\Rightarrow \qquad \frac{55}{6}(q-1) = 0 \Rightarrow q = 1$$

Q17: Prove that

$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b}) = 0$$

Sol: Here ,we have

$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b})$$

$$= [(\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}] + [(\overrightarrow{b} \cdot \overrightarrow{a}) \overrightarrow{c} - (\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a}] + [(\overrightarrow{c} \cdot \overrightarrow{b}) \overrightarrow{b} - (\overrightarrow{c} \cdot \overrightarrow{a}) \overrightarrow{b}]$$

$$= [(\overrightarrow{b} \cdot \overrightarrow{a}) \overrightarrow{c} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}] + [(\overrightarrow{c} \cdot \overrightarrow{b}) \overrightarrow{a} - (\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a}] + [(\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{c} \cdot \overrightarrow{a}) \overrightarrow{b}]$$

$$= [(\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}] + [(\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a} - (\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a}] + [(\overrightarrow{c} \cdot \overrightarrow{a}) \overrightarrow{b} - (\overrightarrow{c} \cdot \overrightarrow{a}) \overrightarrow{b}]$$

$$= [(\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}] + [(\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a} - (\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a}] + [(\overrightarrow{c} \cdot \overrightarrow{a}) \overrightarrow{b} - (\overrightarrow{c} \cdot \overrightarrow{a}) \overrightarrow{b}]$$
Proved.