Free Study Material from All Lab Experiments

All Lab

Experiments

Digital Systems & Applications Chapter - 13

13. Intel 8085 Microprocessor Architecture

Support us by Donating at the link "DONATIONS" given on the Main Menu

Even the smallest contribution of you will Help us keep Running

Chapter – 13

Introduction to Assembly Language

Introduction to Assembly Language:1 byte, 2 byte and 3 byte instructions.

(4 Lectures)

Que1. What is an instruction?

Ans. An instruction is a command given to the microcomputer to perform a specific task or function on a given data.

Que2. What is meant by instruction set?

Ans. An instruction set is a collection of instructions that the microprocessor is designed to perform.

Que3. In how many categories the instructions of 8085 be classified?

Ans. Functionally, the instructions can be classified into five groups:

z data transfer (copy) group

z arithmetic group

z logical group

z branch group

z stack, I/O and machine control group.

Support by Donating

https://alllabexperiments.com

Que4. What are the different types of data transfer operations possible?

Ans. The different types of data transfer operations possible are cited below:

- z Between two registers.
- z Between a register and a memory location.
- z A data byte can be transferred between a register and a memory location.
- z Between an I/O device and the accumulator.
- z Between a register pair and the stack.

The term 'data transfer' is a misnomer—actually data is not transferred, but copied from source to destination.

Que5: What is a three-byte instruction?

Ans: In a three-byte instruction, the first byte specifies the Opcode, and the

following two bytes specifies the 16- bit address.

Important Instructions of 8085

https://alllabexperiments.com

Table below gives important instructions for 8085 which will be useful for writing assembly language programs.

Control Instructions

https://alllabexperiments.com

Opcode	Operand	Explanation of Instruction	Description	
NOP	none	No operation	No operation is performed. The instruction is fetched and decoded. However no operation is executed.	
			Example: NOP	
HLT	none	Halt and enter wait state	The CPU finishes executing the current instruction and halts any further execution. An interrupt or reset is necessary to exit from the halt state. Example: HLT	
LOGIC				

LOGICAL INSTRUCTIONS

Opcode	Operand	Explanation of Instruction	Description
СМР	R M	Compare register or memory with accumulator	The contents of the operand (register or memory) are M compared with the contents of the accumulator. Both contents are preserved. The result of the comparison is shown by setting the flags of the PSW as follows:
			<pre>if (A) < (reg/mem): carry flag is set if (A) = (reg/mem): zero flag is set if (A) > (reg/mem): carry and zero flags are reset Example: CMP B or CMP M</pre>

СРІ	8-bit data	Compare immediate with accumulator	The second byte (8-bit data) is compared with the contents of the accumulator. The values being compared remain unchanged. The result of the comparison is shown by setting the flags of the PSW as follows:
			if (A) < data: carry flag is set if (A) = data: zero flag is set
htt	ps://alllabe>	periments.com	if (A) > data: carry and zero flags are reset
Su	oport by Do	nating	Example: CPI 89H
ANA	R M	Logical AND register or memory with accumulator	The contents of the accumulator are logically ANDed with M the contents of the operand (register or memory), and the result is placed in the accumulator. If the operand is a memory location, its address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the operation. CY is reset. AC is set.
			Example: ANA B or ANA M
ANI	8-bit data	Logical AND immediate with accumulator	The contents of the accumulator are logically ANDed with the 8-bit data (operand) and the result is placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY is reset. AC is set. Example: ANI 86H
XRA	R	Exclusive OR register or memory with accumulator	The contents of the accumulator are Exclusive ORed with M the contents of the operand (register or memory), and the result is placed in the accumulator. If the operand is a memory location, its address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the operation. CY and AC are reset.
			Example: XRA B or XRA M
XRI	8-bit data	Exclusive OR immediate with accumulator	The contents of the accumulator are Exclusive ORed with the 8-bit data (operand) and the result is placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY and AC are reset.
			Example: XRI 86H
ORA	R M	Logical OR register or memory with	The contents of the accumulator are logically ORed with M the contents of the operand (register or memory), and the result is placed in the accumulator. If the operand is a memory location,

		accumulator	its address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the operation. CY and AC are reset.
			Example: ORA B or ORA M
ORI	8-bit data	Logical OR immediate with accumulator	The contents of the accumulator are logically ORed with the 8-bit data (operand) and the result is placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY and AC are reset.
https://	alllabexperin	nents.com	Example: ORI 86H
RLC	none	Rotate accumulator left	Each binary bit of the accumulator is rotated left by one position. Bit D7 is placed in the position of D0 as well as in the Carry flag. CY is modified according to bit D7. S, Z, P, AC are not affected. Example: RLC
RRC	none	Rotate accumulator right	Each binary bit of the accumulator is rotated right by one position. Bit D0 is placed in the position of D7 as well as in the Carry flag. CY is modified according to bit D0. S, Z, P, AC are not affected.
RAL	none	Rotate accumulator left through carry	Each binary bit of the accumulator is rotated left by one position through the Carry flag. Bit D7 is placed in the Carry flag, and the Carry flag is placed in the least significant position D0. CY is modified according to bit D7. S, Z, P, AC are not affected. Example: RAL
RAR	none	Rotate accumulator right through carry	Each binary bit of the accumulator is rotated right by one position through the Carry flag. Bit D0 is placed in the Carry flag, and the Carry flag is placed in the most significant position D7. CY is modified according to bit D0. S, Z, P, AC are not affected.
			Example: RAR
СМА	none	Complement accumulator	The contents of the accumulator are complemented. No flags are affected.
			Example: CMA
СМС	none	Complement carry	The Carry flag is complemented. No other flags are affected.

by All Lab Experiments

				Example: CMC
STC	none	Set Carry	Set Carry	
				Example: STC

BRANCHING INSTRUCTIONS

https://alllabexperiments.com

Opcode			Operand	Explanation of Instruction	Description
	JMP		16-bit address	Jump unconditionally	The program sequence is transferred to the memory location specified by the 16-bit address given in the operand. Example: JMP 2034H or JMP XYZ
Opcode J C	Description Jump on Carry	Flag Status CY = 1	16-bit address	Jump conditionally	The program sequence is transferred to the memory location specified by the 16-bit address given in the operand based on the
JNC	Jump on no Carry	CY = 0			specified flag of the PSW as
JP	Jump on positive	S = 0			described below.
JM	Jump on minus	S = 1			Example: JZ 2034H or JZ XYZ
JZ	Jump on zero	Z=1	10 -		
JNZ	Jump on no zero	Z = 0			
JPE	Jump on parity even	P = 1			
JPO	Jump on parity odd	P = 0			
Opcode	Description	Flag Status	16-bit	Unconditional	The program sequence is
сс	Call on Carry	CY = 1	address	subroutine call	transferred to the memory location specified by the 16-bit address
CNC	Call on no Carry	CY = 0			given in the operand. Before the
СР	Call on positive	S = 0			transfer, the address of the next instruction after CALL (the contents

CM CZ	Call on minus Call on zero	S = 1 Z = 1			of the program counter) is pushed onto the stack.
CNZ	Call on no zero	Z = 0			Example: CALL 2034H or CALL XYZ
CPE	Call on parity even	P = 1			
СРО	Call on parity odd	P = 0			
	by Donating abexperiments.com	١	none	Return from subroutine unconditionally	The program sequence is transferred from the subroutine to the calling program. The two bytes from the top of the stack are copied into the program counter, and program execution begins at the new address.
					Example: RET

Arithmetic Instructions

Arithr	netic Ins	tructions	onts
Opcode	Operand	Explanation of Instruction	Description
ADD	R	Add register or memory, to accumulator	The contents of the operand (register or memory) are added to the contents of the accumulator and the result is stored in the accumulator. If the operand is a memory location, its location is specified by the contents of the HL registers. All flags are modified to reflect the result of the addition. Example: ADD B or ADD M
ADC	R	Add register to accumulator with carry	The contents of the operand (register or memory) and M the Carry flag are added to the contents of the accumulator and the result is stored in the accumulator. If the operand is a memory location, its location is specified by the contents of the HL registers. All flags are modified to reflect the result of the addition. Example: ADC B or ADC M

ADI	8-bit data	Add immediate to accumulator	The 8-bit data (operand) is added to the contents of the accumulator and the result is stored in the accumulator. All flags are modified to reflect the result of the addition.
			Example: ADI 45H
ACI	8-bit data	Add immediate to accumulator with carry	The 8-bit data (operand) and the Carry flag are added to the contents of the accumulator and the result is stored in the accumulator. All flags are modified to reflect the result of the addition.
ttps://alll	abexperimen	ts.com	Example: ACI 45H
LXI	Reg. pair, 16-bit data	Load register pair imm <mark>ed</mark> iate	The instruction loads 16-bit data in the register pair designated in the operand. Example: LXI H, 2034H or LXI H, XYZ
DAD	Reg. pair	Add register pair to H and L registers	The 16-bit contents of the specified register pair are added to the contents of the HL register and the sum is stored in the HL register. The contents of the source register pair are not altered If the result is larger than 16 bits, the CY flag is set. No other flags are affected.
		00	Example: DAD H
SUB	R	Subtract register or memory from accumulator	The contents of the operand (register or memory) are subtracted from the contents of the accumulator, and the resul- is stored in the accumulator. If the operand is a memory location, its location is specified by the contents of the HI registers. All flags are modified to reflect the result of the subtraction.
			Example: SUB B or SUB M
SBB	R M	Subtract source and borrow from accumulator	The contents of the operand (register or memory) and M the Borrow flag are subtracted from the contents of the accumulator and the result is placed in the accumulator. If the operand is a memory location, its location is specified by the contents of the HL registers. All flags are modified to reflect the result of the subtraction.
			Example: SBB B or SBB M
SUI	8-bit data	Subtract immediate from accumulator	The 8-bit data (operand) is subtracted from the contents of the accumulator and the result is stored in the accumulator. All flag

immediate from accumulator with borrow register D, and the contents of register L are exchanged with contents of register E. INR R Increment register or memory by 1 Example: XCHG INR R Increment register or memory by 1 The contents of the designated register or memory incremented by 1 and the result is stored in the same place the operand is a memory location, its location is specified by contents of the HL registers. INX R Increment register The contents of the designated register pair are incremente 1 and the result is stored in the same place. INX R Increment register or memory by 1 The contents of the designated register or memory ar decremented by 1 and the result is stored in the same place. DCR R Decrement register or memory by 1 The contents of the designated register or memory ar decremented by 1 and the result is stored in the same place. DCR R Decrement register or memory by 1 The contents of the designated register pair are decremented by 1 and the result is stored in the same place. DCX R Decrement register pair by 1 The contents of the designated register pair are decremented 1 and the result is stored in the same place. DCX R Decrement register pair by 1 The contents of the designated register pair are decremente 1 and the result is stored in the same place. DCX R Dece					
SBI 8-bit data Subtract immediate from accumulator with borrow The contents of register H are exchanged with the contents of register L are exchanged with the contents of register L are exchanged with borrow INR R Increment register or memory by 1 The contents of the designated register or memory) incremented by 1 and the result is stored in the same plate the operand is a memory location, its location is specified by contents of the HL registers. INX R Increment register pair by 1 The contents of the designated register pair are incremente 1 and the result is stored in the same place. INX R Increment register or memory by 1 The contents of the designated register or memory are decremented by 1 and the result is stored in the same place. DCR R Decrement register or memory by 1 The contents of the designated register or memory are decremented by 1 and the result is stored in the same place. DCX R Decrement register pair by 1 The contents of the designated register pair are decrementer 1 and the result is stored in the same place. DCX R Decrement register pair by 1 The contents of the designated register pair are decrementer 1 and the result is stored in the same place. DCX R Decrement register pair by 1 The contents of the designated register pair are decrementer 1 and the result is stored in the same place. DAA none Decimal adjust					are modified to reflect the result of the subtraction.
immediate from accumulator with borrow register D, and the contents of register L are exchanged with contents of register E. INR R Increment register or memory by 1 M Increment register or memory by 1 The contents of the designated register or memory location, its location is specified by contents of the HL registers. INX R Increment register pair by 1 The contents of the designated register pair are incrementer 1 and the result is stored in the same place. INX R Decrement register or memory by 1 The contents of the designated register or memory ar decremented by 1 and the result is stored in the same place. DCR R Decrement register or memory by 1 The contents of the designated register or memory ar decremented by 1 and the result is stored in the same place. DCR R Decrement register or memory by 1 The contents of the designated register or memory ar decremented by 1 and the result is stored in the same place. DCX R Decrement register pair by 1 The contents of the designated register pair are decrementer 1 and the result is stored in the same place. DCX R Decrement register pair by 1 The contents of the designated register pair are decrementer 1 and the result is stored in the same place. DAA none Decimal adjust accumulator The contents of the accumulator are changed from a bi value to two 4-bit bi					Example: SUI 45H
INR R Increment register or memory by 1 The contents of the designated register or memory incremented by 1 and the result is stored in the same place the operand is a memory location, its location is specified by contents of the HL registers. INX R Increment register pair by 1 The contents of the designated register pair are incremented the operand is a memory location, its location is specified by contents of the HL registers. DCR R Increment register or memory by 1 The contents of the designated register or memory ar decremented by 1 and the result is stored in the same place. DCR R Decrement register or memory by 1 The contents of the designated register or memory ar decremented by 1 and the result is stored in the same place. DCR R Decrement register or memory by 1 The contents of the designated register or memory ar decremented by 1 and the result is stored in the same place. DCR R Decrement register pair by 1 The contents of the designated register pair are decremented by 1 and the result is stored in the same place. DCX R Decrement register pair by 1 The contents of the designated register pair are decremented 1 and the result is stored in the same place. DAA none Decimal adjust accumulator The contents of the accumulator are changed from a bit of BCD conversion, and the conversion procedure is describelow. S, Z, AC, P, CY flags are aletered to reflect the results or operation.		SBI	8-bit data	immediate from accumulator with	The contents of register H are exchanged with the contents of register D, and the contents of register L are exchanged with the contents of register E.
Image: Stand Stan					Example: XCHG
INX R Increment register pair by 1 The contents of the designated register pair are incremented and the result is stored in the same place. DCR R Decrement register or memory by 1 The contents of the designated register or memory ar decremented by 1 and the result is stored in the same plate the operand is a memory location, its location is specified by contents of the HL registers. DCX R Decrement register pair by 1 The contents of the designated register pair are decremented by 1 and the result is stored in the same plate the operand is a memory location, its location is specified by contents of the HL registers. DCX R Decrement register pair by 1 The contents of the designated register pair are decremented 1 and the result is stored in the same place. DAA none Decimal adjust accumulator The contents of the accumulator are changed from a bit value to two 4-bit binary coded decimal (BCD) digits. This is only instruction that uses the auxiliary flag to perform the bit to BCD conversion, and the conversion procedure is describelow. S, Z, AC, P, CY flags are altered to reflect the results or operation. If the value of the low-order 4-bits in the accumulator is grap than 9 or if AC flag is set, the instruction adds 6 to the low-order 4-bits in the accumulator is grap than 9 or if AC flag is set, the instruction adds 6 to the low-order 4-bits in the accumulator is grap than 9 or if AC flag is set, the instruction adds 6 to the low-order 4-bits in the accumulator is grap than 9 or if AC flag is set, the instruction adds 6 to the low-order 4-bits in the accumulator is grap than 9 or if AC flag is se			М	5	The contents of the designated register or memory) are incremented by 1 and the result is stored in the same place. If the operand is a memory location, its location is specified by the contents of the HL registers.
pair by 1 1 and the result is stored in the same place. DCR R Decrement register or memory by 1 The contents of the designated register or memory ar decremented by 1 and the result is stored in the same place. DCX R Decrement register pair by 1 The contents of the designated register pair are decremented the operand is a memory location, its location is specified by contents of the HL registers. DCX R Decrement register pair by 1 The contents of the designated register pair are decremented 1 and the result is stored in the same place. DAA none Decimal adjust accumulator The contents of the accumulator are changed from a bi value to two 4-bit binary coded decimal (BCD) digits. This is only instruction that uses the auxiliary flag to perform the bi to BCD conversion, and the conversion procedure is describelow. S, Z, AC, P, CY flags are altered to reflect the results o operation. If the value of the low-order 4-bits in the accumulator is great than 9 or if AC flag is set, the instruction adds 6 to the low-order	nttps://all	labexperi	ments.com		Example: INR B or INR M
Mregister or memory by 1decremented by 1 and the result is stored in the same plan the operand is a memory location, its location is specified by contents of the HL registers.DCXRDecrement register pair by 1The contents of the designated register pair are decremented 1 and the result is stored in the same place.DCXRDecrement register pair by 1The contents of the designated register pair are decremented 1 and the result is stored in the same place.DAAnoneDecimal adjust accumulatorThe contents of the accumulator are changed from a bi value to two 4-bit binary coded decimal (BCD) digits. This is only instruction that uses the auxiliary flag to perform the bi to BCD conversion, and the conversion procedure is descr below. S, Z, AC, P, CY flags are altered to reflect the results o operation.If the value of the low-order 4-bits in the accumulator is great than 9 or if AC flag is set, the instruction adds 6 to the low-order		INX	R		
DCX R Decrement register pair by 1 The contents of the designated register pair are decremented 1 and the result is stored in the same place. DAA none Decimal adjust accumulator The contents of the accumulator are changed from a bit value to two 4-bit binary coded decimal (BCD) digits. This is only instruction that uses the auxiliary flag to perform the bit to BCD conversion, and the conversion procedure is describelow. S, Z, AC, P, CY flags are altered to reflect the results of operation. If the value of the low-order 4-bits in the accumulator is great than 9 or if AC flag is set, the instruction adds 6 to the low-order		DCR		register or	The contents of the designated register or memory are M decremented by 1 and the result is stored in the same place. If the operand is a memory location, its location is specified by the contents of the HL registers.
Image: register pair by 1 1 and the result is stored in the same place. Image: DCX H Image: DCX H </td <td></td> <td></td> <td></td> <td>mo</td> <td>Example: DCR B or DCR M</td>				mo	Example: DCR B or DCR M
DAAnoneDecimal adjust accumulatorThe contents of the accumulator are changed from a bi- value to two 4-bit binary coded decimal (BCD) digits. This is only instruction that uses the auxiliary flag to perform the bi- to BCD conversion, and the conversion procedure is descr below. S, Z, AC, P, CY flags are altered to reflect the results of operation.If the value of the low-order 4-bits in the accumulator is great than 9 or if AC flag is set, the instruction adds 6 to the low-order		DCX	R		The contents of the designated register pair are decremented by 1 and the result is stored in the same place.
accumulatorvalue to two 4-bit binary coded decimal (BCD) digits. This is only instruction that uses the auxiliary flag to perform the bit to BCD conversion, and the conversion procedure is descr below. S, Z, AC, P, CY flags are altered to reflect the results o operation.If the value of the low-order 4-bits in the accumulator is great than 9 or if AC flag is set, the instruction adds 6 to the low-order					Example: DCX H
than 9 or if AC flag is set, the instruction adds 6 to the low-c		DAA	none		The contents of the accumulator are changed from a binary value to two 4-bit binary coded decimal (BCD) digits. This is the only instruction that uses the auxiliary flag to perform the binary to BCD conversion, and the conversion procedure is described below. S, Z, AC, P, CY flags are altered to reflect the results of the operation.
					If the value of the low-order 4-bits in the accumulator is greater than 9 or if AC flag is set, the instruction adds 6 to the low-order four bits.

If the value of the high-order 4-bits in the accumulator is greater than 9 or if the Carry flag is set, the instruction adds 6 to the

https://alllabexperiments.com

Digital Syste	ems and Applica	ations Quic	ck Notes by All Lab Experiments
		ł	high-order four bits.
			Example: DAA
https	://alllabexpe	riments.com	Support by Donating
Data '	Transfe	r Instructions	
Opcode	Operand	Explanation of Instruction	Description
MOV	Rd, Rs M, Rs Rd, M	Copy from source(Rs) to destination(Rd)	This instruction copies the contents of the source registre into the destination register; the contents of the source register are not altered. If one of the operands is a memo location, its location is specified by the contents of the H registers.
		hales!	Example: MOV B, C or MOV B, M
MVI	Rd, data M, data	Move immediate 8- bit	The 8-bit data is stored in the destination register memory. If the operand is a memory location, its location specified by the contents of the HL registers.
			Example: MVI B, 57H or MVI M, 57H
LDA	16-bit address	Load accumulator	The contents of a memory location, specified by a 16-b address in the operand, are copied to the accumulator. The contents of the source are not altered.
			Example: LDA 2034H
LDAX	B/D Reg. pair	Load accumulator indirect	The contents of the designated register pair point to memory location. This instruction copies the contents of the memory location into the accumulator. The contents of either the register pair or the memory location are not altered.

Digital Systems and Applications

Quick Notes

LXI	Reg. pair, 16-bit data	Load register pair immediate	The instruction loads 16-bit data in the register paid designated in the operand. Example: LXI H, 2034H or LXI H, XYZ
LHLD	16-bit address experiments.c	Load H and L registers direct	The instruction copies the contents of the memory location pointed out by the 16-bit address into register L and copie the contents of the next memory location into register H. The contents of source memory locations are not altered.
			Example: LHLD 2040H
STA	16-bit address	16-bit address	The contents of the accumulator are copied into the memor location specified by the operand. This is a 3-byte instruction the second byte specifies the low-order address and the thir byte specifies the high-order address. Example: STA 4350H
STAX	Reg. pair	Store accumulator indirect	The contents of the accumulator are copied into the memory location specified by the contents of the operand (register pair). The contents of the accumulator are not altered. Example: STAX B
SHLD	16-bit address	Store H and L registers direct	The contents of register L are stored into the memory location specified by the 16-bit address in the operand and the contents of H register are stored into the next memory location by incrementing the operand. The contents of registers HL are not altered. This is a 3-byte instruction, the second byte specifies the low-order address and the thir byte specifies the high-order address. Example: SHLD 2470H
			· · · · · · · · · · · · · · · · · · ·
XCHG	none	Exchange H and L with D and E	The contents of register H are exchanged with the content of register D, and the contents of register L are exchange with the contents of register E.
			Example: XCHG
SPHL	none	Copy H and L registers to the stack pointer	The instruction loads the contents of the H and L register into the stack pointer register, the contents of the H register provide the high-order address and the contents of the register provide the low-order address. The contents of the

https://alllabexperiments.com

			and L registers are not altered.					
			and Liegisters are not altered.					
			Example: SPHL					
XTHL Su	none Ipport by Don	Exchange H and L with top of stack nating	The contents of the L register are exchanged with the stac location pointed out by the contents of the stack pointer register. The contents of the H register are exchanged with the next stack location (SP+1); however, the contents of the					
tps://allla	bexperiment	s.com	stack pointer register are not altered.					
			Example: XTHL					
PUSH	Reg. pair	Push register pair onto stack	The contents of the register pair designated in the operand are copied onto the stack in the following sequence. The stack pointer register is decremented and the contents of the highorder register (B, D, H, A) are copied into that location The stack pointer register is decremented again and the contents of the low-order register (C, E, L, flags) are copied to that location.					
			Example: PUSH B or PUSH A					
РОР	Reg. pair	Pop off stack to register pair	The contents of the memory location pointed out by the stack pointer register are copied to the low-order register (C E, L, status flags) of the operand. The stack pointer is incremented by 1 and the contents of that memory location are copied to the high-order register (B, D, H, A) of the operand. The stack pointer register is again incremented by 1.					
			Example: POP H or POP A					
OUT	8-bit port address	Output data from accumulator to a port with 8-bit address	The contents of the accumulator are copied into the I/O por specified by the operand. Example: OUT F8H					
IN	8-bit port address	Input data to accumulator from a	The contents of the input port designated in the operand ar read and loaded into the accumulator.					
		port with 8-bit address	Example: IN 8CH					

Que6: Memory location 3050 H is specified by HL pair and contains data FE H. Accumulator contains 14 H. Add the contents of memory location with accumulator. Store the result in 2050 H.

Support by Donating

Ans:

The program is written as follows:

LXIH, 3050 H \Rightarrow HL register pair points 3050 H memory location

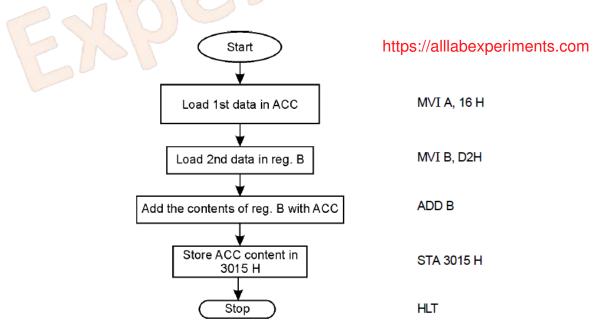
ADD M \Rightarrow Add contents of 3050 H with accumulator

STA 2050 H \Rightarrow Result in accumulator is stored in 2050 H

Prior to execution of the program, memory location 3050 H is loaded with data FE H and accumulator with 14 H.

Que7: Write down the result of EX–OR operation on accumulator and register B. Assume ACC = 18 H and B = 27 H.

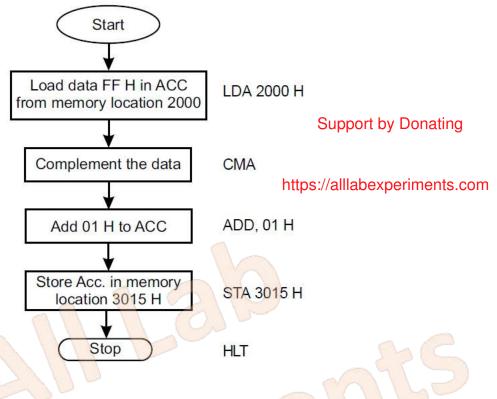
Ans:


The instruction used for this operation is XRA B.

ACC	=	0	0	0	1	1	0	0	0
В	4	0	0	1	0	0	1	1	1
EX-OR	\Rightarrow	0	0	1	1	1	1	1	1
	=	3F	H						

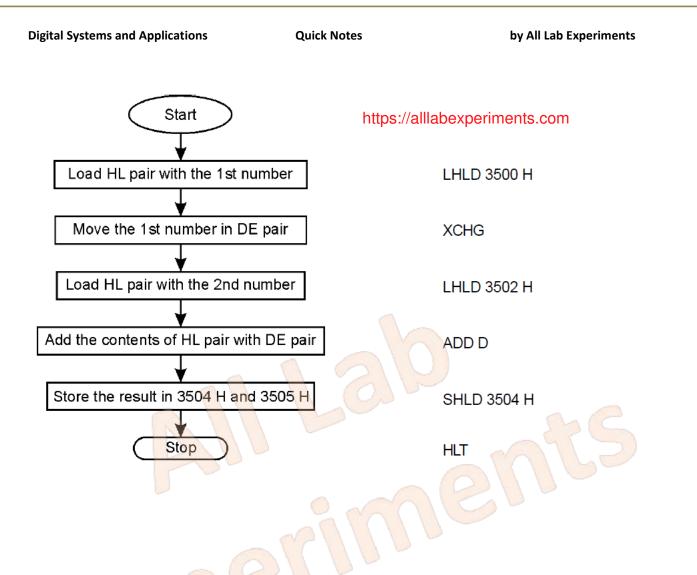
The result 3F H of EX-OR is stored in accumulator.

Que8: Draw the flow chart and write down the program to add two numbers 16 H and D2 H. Store the result in memory location 3015 H.

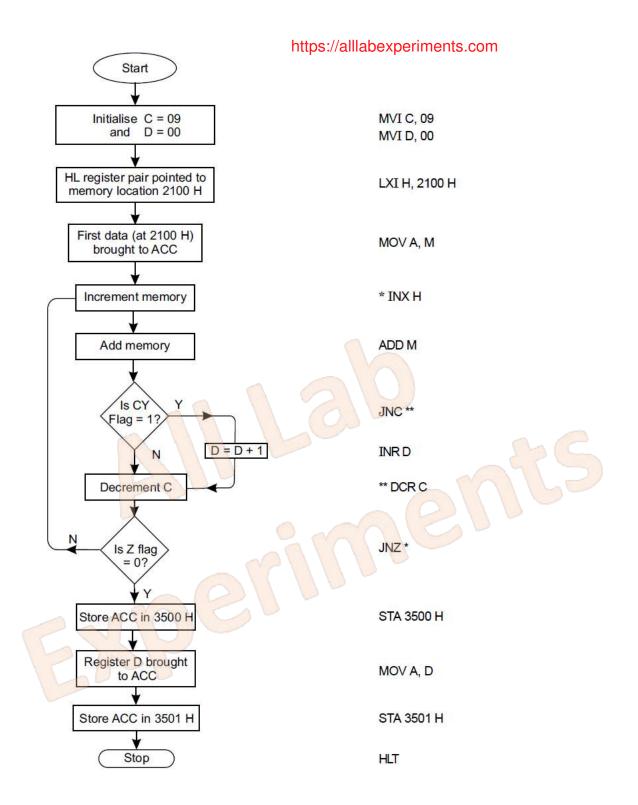

Ans. The flowchart for the above would look as follows.

Que9: Write a program, along with flowchart, to find the 2's complement of the number FF H, stored at memory location 2000 H. Store the result in memory location 3015 H.

https://alllabexperiments.com


Ans. The flowchart, along with the program, is shown below:

Memory location 2000 H contains data FF H.


Que10: Write down the program to add two sixteen bit numbers. Draw the corresponding flowchart also.

Ans. Let the two sixteen- bit numbers are stored at memory locations 3500 H to 3503 H. The result of addition is to be stored at memory locations 3504 H and 3505 H. The flowchart and the program will look like as follow:

Que11: Ten 8-bit numbers are stored starting from memory location 2100 H. Add the numbers, store the result at 3500 H memory location and carry at 3501 H. Draw the flowchart also.

Ans. Initially, C register is stored with 09 H to take care of ten 8-bit data. Register D is initialised to 00 and stores the subsequent carry as addition is carried on. Final sum is stored at 3500 H w The corresponding flowchart is also shown. Ten numbers of 8-bit data are stored starting from memory location 2100 H.hile carry is stored at 3501 H.

