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Chapter 1
Superposition of two collinear harmonic oscillations

Superposition of Two Collinear Harmonic oscillations: Sumple harmonic motion
(SHM). Linearity and Superposition Principle. (1) Oscillations having equal
frequencies and (2) Oscillations having different frequencies (Beats).

(6 Lectures)

Q1: what causes a system to oscillate?

The oscillation of a physical system results from fwo basic properties of the
system, namely, elasticity and inertia. Consider a body in equilibrium so
that forces on it balance. Let us displace it from its position of equilibrium
(by doing work on it, i.e. applying a force) by a distance ¢. When it is
released, a restoring force comes into play whose tendency is to ‘restore’
¢ to its original value, which is zero. by imparting to it an appropriate
negative velocity di/dt. The magnitude of the restoring force is determined
by the elastic properties of the system. Inertia, on the other hand, tries to
oppose any change in velocity. When the body reaches its cquilibrium
position (¥ - 0), the negative velocity is maximum which produces a
negative displacement. The body then overshoots its position of equilibrium,
The restoring force now becomes positive (i.e. it belps increase ) and it
must now overcome the inertia of the negative velocity. Consequently the
velocity keeps on decreasing until it is zero but by that time the dispiace-
ment has become large and negative and the process is reversed. This
process of the restoring force trying to bring ¢ to zero by imparting a

velocity and inertia preserving the velocity and making ¢ to overshoot,
repeats itself and the body oscillates.

Q2: Describe Simple harmonic motion (SHM).

Ans:
A periodic motion is a motion which repeats itself after regu-
lar intervals of time. and the simplest Kind of periodic motion
is a simple harmonic motion in which the displacement varies
sinusoidally with time. To understand simple harmonic mo-
tion. we consider a point P rotating on the circumference of
a circle of radius a with an angular velocity @ (see Fig. 7.1).
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We choose the center of the circle as our origin. and we as-
sume that at £ = 0 the point P lies on the x axis (i.e.. at point
P,). At an arbitrary time f the point will be at position P where
ZPOP,= .

Py

Fig. 71 The point P is rotating in the counterclockwise
direction on the circumference of a circle of radius
a, with uniform angular velocity w. The foot of the

perpendicular on any one of the diameters
executes simple harmonic motion. Point P, is the
position of the point at = 0.

Let 4 be the foot of the perpendicular from the point P on
the x axis. Clearly. the distance

04 = q cos of (1)
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and as point P rotates on the circumference of the circle.
point 4 moves to and fro about the origin on the diameter.
When point P is at P,. then the foot of the perpendicular is at
O. This can also be seen from Eq. (1) because when P coin-
cides with Py, ot =m/2 and hence a coswf=a cos /2 =0. As
the point still moves farther. the foot of the perpendicular will
lie on the other side of the origin and thus OA4 will be nega-
tive. as is also evident from Eq. (1) because mf then greater
than m/2. When P coincides with P,. then O4 = OP, = —a.
When point P moves from P, to P;. OA4 starts decreasing and
it finally goes to zero when P coincides with P,. After P
crosses P;. OA starts increasing again and finally acquires
the value a when P coincides with P, After crossing the
point P, the motion repeats itself.

A motion in which the displacement varies sinusoidally with
time [as i Eq. (1)] 1s known as a simple harmonic motion.
Thus, when a point rotates on the circumference of a circle
with a uniform angular velocity, the foot of the perpendicular
on any one of its diameters will execute simple harmonic
moition. The quanfity a is called the amplitude of the motion.
and the period of the motion T will be the time required to
complete one revolution. Since the angular velocity 1s m. the
time taken for one complete revolution will be 2m/em. Thus.

2m

e 2)

Q3: what are the characteristics of SHM?

Ans: characteristics of SHM are as follows:
Amplitade
The amplitude of an SHiM is the maximum (positive or negative) value of
the displacement from the mean position. Since the maximum and mini-
mum values of any cosine function are respectively +1 and --1, the
maximum and minimum values of ¢ in Eq. (1.7) are respectively +4 and
—A. A iscalled the amplitude of SHM.
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Time Period

The smallest time interval during which the oscillation repeats itself is
called the time period (or simply, period) T of the oscillation. If time ¢ in
Eq (1.7) is advanced by 2m/w, to t* = ¢+ 27w the function becomes

$(t") = A cos (wi’+¢)
= Ams{ @ ( t+21J+¢ }

L]
= A cos (wl+¢+27)
= A cos (wt+¢)
= 1)
In other words, the displacement repeats itself in a time interval of
27)w. Therefore, the period T is given by

2w m
T=a="J¥x (1.8)

Frequency of SHM, is the number of oscillations completed in a unit
time interval. Therefore, by definition, frequency is the reciprocal of the
time period, ie.

y = ¥ - 1 J Z
z 2n\ m (1.9)
2n -
Thus @ 7 27y (1.10)

Phase

The argument (wi+¢) of the cosine function is called the phase of the
motion. The constant ¢ of is called the initial phase (i. e. phase atr = 0)
or the phase constant. The phase of an oscillating system at any instant
is its state as regards its position and direction of motion at that instant.
The knowledge of the phase constant enables us to find out how far from

the mean position the system was at time ¢ = 0. For example, if ¢ = 0
(1) = A cost wt

which means that the displacement was maximum = 4 at time ¢ = 0, i.e.

when the motion was started. On the other hand, if ¢ = =2

1) =Ams(mr+ %) = A4 sin wt




Waves & Optics [Quick Notes] https://alllabexperiments.com

i e. the displacement was zero at time ¢ = 0. In other words, the counting
of time was started the moment the oscillator passed the mean position.
Thus phase constant is a measure of how much time had elapsed before
the oscillator last passed the mean position., Amplilude 4 and phase
constant ¢ are determined from the iﬂﬂ:ﬂi conditions, i.e, the way the
system is started at time r = 0 "___ S

Fi

Q4: Derive the expression for velocity and acceleration of SHM.

It is instructive to learn how velocity and acceleration in a SHM vary with
time. We know that displacement ¢(¢) is given by

1) = A cos (wi+¢)
Velocity ¥ and acceleration a are given by

V= -g—f = 11'#'-—..{ w 8in (wi+4¢)

= F 4o (1-4 2£)° (1.11)
and am = e —thoos (@it = —a2b (L12)

We notice that when the displacement is maximum (44 or —A4) the
velocity ¥ = 0, because now the oscillator has to return and velocity must

change its direction. But when  is maximum (-A or - 4), the accele-
ration is also maximum (-w’4 and +w24 respectively) and is directed
opposite to the displacement. When ¢ = 0, i.e. when cos (wt+¢) =0,
the velocity is maximum (wd or —wd) and the acceleration is zero. .

Q: Derive the expression for energy of SHM.

Consider a system at rest at its position of equilibrium. When it is
displaced from this position (by doing work on it) it acquires potential
energy. When the system is released, it begins to move with a velocity,
thus acquiring kinetic energy. At any instant of time, the kinetic energy o
a system of mass » executing SHM is given by [using Eq. (1.11)]

Kinetic energy (KE) = § mV? = {maw?4? sin? (wi+¢) (1.13)
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The kinetic energy of the oscillator varies periodically. It is maximum
(= } mw?4?) when the velocity is maximum (= ! @ A4) and displacement
is zero. When the displacement is maximum ( = + A), velocity ¥ = 0 and
KE = 0. At these exlreme posilions, the energy is all potenticl At
intermediate positions (y lying between O and - .4), the energy is partly
kinetic and partly poteniial.

¢ (1) = A cos (wt+¢)

A closer look at above equation reveals that the total energy of the oscillator
must remain constant because the maximum displacemsznt is regained
after every half cycle If no energy is dissipated (we have neglected
dissipative or non-conservative forces like friction), then all the potential
energy becomes kinetic and vice versa.

The energy of the oscillator may decrease not only due to friction in
the system but also due to radiation The oscillating body imparts peri-
odic motion to the particles of the medium in which it oscillates thus
p:odul:ing waves For example, a tunmg fork or a string produces sound
waves in the medium which results in a decrease in encrgy.

Let us now compute pulrntml energy atany instant of time ¢, Let ¢
be the displacement at time ¢. The potential energy is given by the amount
of work required to move the system from¢ = 0 to ¢, by applying a
force

The force must be just enough to oppose the restoring force F = —K{
In other words, the force to be applied must be K¢.
Work required to give an infinitesimal displacement dy = K¢ d{
Therefore, the total work done to displace the system from
¥
Oto} = ]xw = } K.
1]

Thus
Potential energy (PE) = } Ky?
= § m 0?4 cos? (wi+¢) (1.14)
where we have used Eqs. (1.3) and (1.7).
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Equations (1.13) and (1.14) give the instantaneous values of kinetic and
potential energy.
The total energy E in SHM is, therefore, given by
E=KE 4+ PE

= } ma?43{5in? (wt +¢)+cos(wt +¢)}
or E = } meiA?

which is constant as we would expect. It is obvious that the maximum
values of kinetic and potential energy are equal (both equal to § maw?4?)
indicating that the encrgy exchange is complete. Figure 1.3 shows how the
kinetic and potential energy of the harmonic oscillator vary with time
where, for simplicity, we have set ¢ = 0.

Q: Describe superposition principle of harmonic oscillations
Ans:
We know that for small oscillations, a simple pendulum executes simple harmonic
motion. Let us reconsider this motion and release the bab at the instant 2 = () when 1t
has mitial displacement a,. Let the displacement at a subsequent time ¢ be x). Let us
repeat the experiment with an imtial displacement @2, Let the displacement after the
same interval of time # be x2. Now if we take the initial displacement to be the sum of
the earlier displacemen'ts, viz. @1 + g2, then according to the superposition principle,
the displacement xs after the same interval of time ¢ will be

X3 = x1 + x.
You can perform this activity by taking three identical simple pendulums. Release all
three bobs simullaneously such that their initial velocities are zero and initial
displacements of the first, second and the third pendulum are @1, @z and ay + a3,
respectively. You will find that at any time the displacement x; of the third pendulum
will be the algebraic sum of the displacements of the other two. In general, the initial
velocities may be non-zero. Thus, the principle of superposition can be stated as
follows:
When we superpose the initial conditions corresponding to velocities and amplitudes,
the resultani displacement of two (or more) harmonic displacements will be simply the
algebraic sum of the individual displacements at all subsequent times.

You will note that the principle of superposition holds for any number of simple
harmonic ascillations. These may be in the same or mutually perpendicular directions,
i.e. In two dimensions.
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Q: derive an expression for superposition of two collinear harmonic oscillations
having equal frequencies.
Ans:

Suppose we have two SHMs of equal frequencies but of different amplitudes
and phase constants acting on a particle (or a system) in the x direction.
The displacements x; and x2 of the two harmonic motions, of the same

angular frequency w, are given by
x1 = Ay cos (wt+4¢1) (2.6)
and x3 = A2 cos (wi+¢2) (2.7

whued;mdd:mth&mpﬁmdulndﬁlaudézmthuphm constants
of the two motions. The resultant motion of the system, which moves in the
x direction under the simultaneous effect of the two harmonic oscillations,
can be found by the following methods.

We use the superposition principle which states that the resultant
dispueemmL t x is equal to the sum of the individual displacements x; a.nd
x3, i.e.

x=Xx1+x
= A1 ¢08 (wt+¢1)+ 42 cos (wt+¢)
Using the trignometric identity cos («+) = cos « cos B—sin « sin B, this
equation can be rewritten as
x = (A1 cos 142 cos ¢2) cos wi— (A4 sin ¢; + 42 sin ¢2) sin wt (2.8)
Now let (see also Fig. 2.1)
A1 sin $1+ A2 sin ¢z = A sin 3 (2.9)
and A1 008 $r+ 42 cos $2 = A cos 3 (2.10)
where 4 and 3 are constants to be determined. Using the transformations

(2.9) and (2.10) in Eag. (2.8) we have
x = A cos (wt+3) (2.11)
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A Iﬁ'l sin *'1"”"2 sin ﬁzl

6
(Ay cos @+ 4;cos §,)

Fig. 2.1 Transformation into Aand 5. ) .
Equation (2.11) shows that the resulting motion is simple harmonic with

an angular frequency w, the same as that of the individual SHMs. The
resulting motion has an amplitude A and a phase constant 3. 4 and 8 can
be evaluated from Eqs. (2.9) and (2.10). Squaring these equations and
adding, we find that the resultant amplitude A is given by

A = A% +A%+24142 cos ($2— $1) (2.12)

Dividing Egs. (2.9) and (2.10) we find that the phase constant of the result-
ing motion is given by
Ay sin ¢, A2 sin ¢2
Ay cos 1+ Az cos ¢2

Thus we conclude that the resultant effect of two collinear SHMs of
equal frequencies is a simple harmonic motion of the same frequency but
having amplitude and phase constant given respectively by Egs. (2.12)
and (2.13).

It is evident from Eq. (2.12) that the amplitude of the resulting
oscillations is maximum given by

Amax = A4z
if cos (§2—#1) =-+1 or d:~¢ = 2mw, where m is an integer with values
m =0, 1, 2, 3,.... On the other hand, the resultant amplitude is minimum

given by

(2.13)

tan 8 =

Amin = A1—A2
if cos (42— ¢1) =~ 1 or g2—¢1 = (2m+1) =. For other values of the
phase difference ($2—¢1) the resultant amplitude 4 lies bet ween Amax and

J"lﬂn-
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Q: derive an expression for superposition of two collinear harmonic oscillations
having different frequencies.
Ans:

In the subsequent chapters we shall come across many physical phenomena
in which the moving part of a system is subjected simultaneously to two

harmonic oscillations of different frequencies. To analyse the resulting
motion of the system, let us consider two harmonic oscillations of different

amplitudes 41 and A2 and different angular frequencies w; and wz2. For
simplicity, we assume that the two oscillations have the same phase
constant which we take to be zero®. The two harmonic oscillations can

be written as

x1 == A; cOS wif (2.15)
x2 = Az 08 w2t (2.16)

From superposition principle, the resulting oscillation is given by
x = X1+x2 = A1 €08 wit+A2 cos wat (2.17)

We shall now recast Eq.(2.17) into a particularly simple form. Let us
define on average frequency w. and a modulation frequency wm as :

wg = § (w14w2) and wm = § (wz—aw1)
where w2 wi, 80 that
W] = Wa—tm
w3 = we+wm
Substituting for wi and w2 in Eq. (2.17) we get
x = A, €08 (we—wm) t+ A2 cos(ws-+wm)

or x = (Ai+A2) cos wm f c08 wa'—(A1— A2) 8in wmt 8in wal (2.18)
Now, as before, let

(A1+ A2) coS wmt = Am COS &m (2.19)
and (A1— A2) sin wmt = Am sin 8w (2.20)
Using these transformations in Eq. (2.18) gives

x = Am cos (wal+ 8m) (2.21)

where Am and 8 are given by [use Egs. (2.19) and (2.20)]
and A 2= A1+ A3+424142 cos (2wmt)

(2.22)
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tan B == A1) sin st (2.23)

The formal resemblance of Eq.(2.21) with the equation of SHM is
misleading. In fact, the oscillation described by Eg. (2.21) is not harmonic
since its amplitude 4w and phase constant 3. both vary with time according
to Eqs. (2.22) and (2.23) respectively. This oscillation can, at best, be
described as periodic with an angular frequency we, the average of the two
component frequencies.

Q: Explain the formation of beats.
Ans:

Beats. Recasting of the superposition (2.17) in the form of Eq. (2.21)
becomes useful il w) and w2 are nearly equal, i.e.

wz &= @)
so that Wy £ Wy
In that case, the ‘modulated’ amplitude Am and ‘modulated’ phase 3. vary
only slightly with time and may be treated as sensibly constant during the
time scale of interest, which in our case, is the period (2n/w,) of the fast
oscillation. Therefore, Eq. (2.21) will represent an ‘almost’ harmonic
oscillation at an angular frequency ws. The resulting oscillation, in the
case when the two frequencies of the SHMs are nearly equal, exhibits
what are called beats.
The amplitude 4» of the resulting motion is maxinum ( = 4,4+ 43)
when [see Eq. (2.22)]
cos (2wmt) =+1

or 2comt = 0, 27, 4=,...
or (w2—wy) t = 0, 27, 4=, ...
or 2m(va—vy) t = 0, 27, 4=, ...
1 2
or when t=0, e Bnarmed L

Here vi ( = @y/27) and va ( = w32/27) are the frequencies of the two SHMs
expressed in hertz.
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Hence the time interval r, between two consecutive maxima = —T]—— . The
vi—vi

frequency vs of the maxima = va—wv1.
The amplitude 4w of the resulting motion is minimum (= 42— A4,) when

cos (Qwmt) =—1

1 3 5
or when 1 = T * T Tacan - - Hence the frequency

of the minima is also v» = v2 -vi. Between any two maxima, there is a

minimum. The periodic variation of the amplitude of the meticn, resulting
from the superposition of SHMs of slightly different frequencies, is known
as the phenomenon of beats. One maximum of amplitude followed by a
minimum is technically called a beat. The time period f; between the
successive beats is called the beat period given by
:
v2—Vv]

and the beat frequency vs is given by

[ R et R ) |
{7

Hence the beat frequency is equal to the differcnce between the frequencies
of the component oscillations.
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(1) Harmonic oscillation at frequency v i
(b) Harmonic oscillation at frequency vi: (v= >v1)
(c) Superposition of {a) and (b) and an harmonic oscillation with period
b= 1(vi—u1)

Figure 2.4 displays graphically the result of superposing two harmonic
oscillations of different frequencies. Notice that Figs 2.4a and 2.4b arc
harmonic oscillations but their superposition shown in Fig. 2.4¢ is periodic
but not harmonic.
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Q: write down the applications of beats.
Ans:

The phenomenon of beats is of great practical importance. Beats can be
used to determine the small difference between frequencies of two sources
of sound. Musicians often make use of beats in tuning their instruments.
A piano tuner uses beats to tell whether his standard tuning fork has the
same frequency as the string of his instrument. If the two differ in
frequency, i.c. are out of tune, he will hear beats. He adjusts the tension
in the string and thus changes the frequency of the note emitted by the
string and matches it with his fork. Sometimes beats are deliberately
produced in a particular section of an orchestra to give a pleasing tone
to the resulting sound. A more complex beat phenomenon, resulting
from the superposition of many harmonic oscillations of different
frequencies, is employed to transmit a signal from one place to another.






