Free Study Material from

All Lab Experiments

All Lab

Experiments

Mathematical Physics - I Chapter -1 Calculus

Support us by Donating at the link "DONATIONS" given on the Main Menu

Even the smallest contribution of you will Help us keep Running

Chapter-1

Calculus

Calculus:

Plotting of functions. Approximation: Taylor and binomial series (statements only). First Order Differential. Equations exact and inexact differential equations and Integrating Factor.
(6 Lectures)

Second Order Differential equations: Homogeneous Equations with constant coefficients. Wronskian and general solution. Particular Integral with operator method, method of undetermined coefficients and variation method of parameters. (15 Lectures)

Q1: State Taylor's theorem

Sol:

If a function $f(z)$ is analytic at all points inside a circle C, with its centre at the point α and radius R, then at each point z inside C.

$$
f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2}+\ldots+\frac{f^{n}(a)}{n!}(z-a)^{n}+\ldots
$$

Variable separation method

If a differential equation can be written in the form

$$
f(y) d y=\phi(x) d x
$$

We say that variables are separable, y on left hand side and x on right hand side.
We get the solution by integrating both sides.

Working Rule:

Step 1. Separate the variables as $\quad f(y) d y=\phi(x) d x$
Step 2. Integrate both sides as $\int f(y) d y=\int \phi(x) d x$
Step 3. Add an arbitrary constant C on R.H.S.

Q2: Solve:

$$
\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}
$$

Sol: We have,

$$
\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}
$$

Separating the variables, we get

$$
(\sin y+y \cos y) d y=\{x(2 \log x+1)\} d x
$$

Integrating both the sides, we get $\int(\sin y+y \cos y) d y=\int\{x(2 \log x+1)\} d x+C$

$$
\begin{array}{cc}
& -\cos y+y \sin y-\int(1) \cdot \sin y d y=2 \int \log x \cdot x d x+\int x d x+C \\
\Rightarrow & -\cos y+y \sin y+\cos y=2\left[\log x \cdot \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right]+\frac{x^{2}}{2}+C \\
\Rightarrow & y \sin y=2 \log x \cdot \frac{x^{2}}{2}-\int x d x+\frac{x^{2}}{2}+C \\
\Rightarrow & y \sin y=2 \log x \cdot \frac{x^{2}}{2}-\frac{x^{2}}{2}+\frac{x^{2}}{2}+C \\
\Rightarrow & y \sin y=x^{2} \log x+C
\end{array}
$$

Q3: Solve the differential equation.

$$
x^{4} \frac{d y}{d x}+x^{3} y=-\sec (x y)
$$

Sol: we have,

$$
x^{4} \frac{d y}{d x}+x^{3} y=-\sec (x y) \quad \Rightarrow x^{3}\left(x \frac{d y}{d x}+y\right)=-\sec x y
$$

Put $v=x y, \frac{d v}{d x}=x \frac{d y}{d x}+y \Rightarrow x^{3} \frac{d v}{d x}=-\sec v$

$$
\begin{array}{ll}
\Rightarrow \frac{d v}{\sec v}=-\frac{d x}{x^{3}} & \Rightarrow \int \cos v d v=-\int \frac{d x}{x^{3}}+c \\
\Rightarrow \sin v=\frac{1}{2 x^{2}}+c & \Rightarrow \sin x y=\frac{1}{2 x^{2}}+c
\end{array}
$$

Q4: Solve

$$
\cos (x+y) d y=d x
$$

Sol:

$$
\cos (x+y) d y=d x \quad \Rightarrow \quad \frac{d y}{d x}=\sec (x+y)
$$

On putting

$$
\begin{aligned}
& x+y=z \\
& 1+\frac{d y}{d x}=\frac{d z}{d x} \\
& \frac{d z}{d x}-1=\sec z
\end{aligned} \Rightarrow \quad \Rightarrow \quad \frac{d y}{d x}=\frac{d z}{d x}-1
$$

So that

Separating the variables, we get

$$
\frac{d z}{1+\sec z}=d x
$$

On integrating,

$$
\begin{gathered}
\int \frac{\cos z}{\cos z+1} d z=\int d x \Rightarrow\left[1-\frac{1}{\cos z+1}\right\rfloor d z=x+C \\
\int\left(1-\frac{1}{2 \cos ^{2} \frac{z}{2}-1+1}\right) d z=x+C \\
\int\left(1-\frac{1}{2} \sec ^{2} \frac{z}{2}\right) d z=x+C \Rightarrow z-\tan \frac{z}{2}=x+C \\
x+y-\tan \frac{x+y}{2}=x+C \\
y-\tan \frac{x+y}{2}=C
\end{gathered}
$$

HOMOGENEOUS DIFFERENTIAL EQUATIONS

A differential equation of the form $\frac{d y}{d x}=\frac{f(x, y)}{\phi(x, y)}$
is called a homogeneous equation if each term of $f(x, y)$ and $\phi(x, y)$ is of the same degree i.e.,

$$
\frac{d y}{d x}=\frac{3 x y+y^{2}}{3 x^{2}+x y}
$$

In such case we put $y=v x$. and $\frac{d y}{d x}=v+x \frac{d v}{d x}$
The reduced equation involves v and x only. This new differential equation can be solved by variables separable method.

Q5: Solve the following differential equation

$$
\left(2 x y+x^{2}\right) y=3 y^{2}+2 x y
$$

Sol: we have
$\left(2 x y+x^{2}\right) \frac{d y}{d x}=3 y^{2}+2 x y \Rightarrow \frac{d y}{d x}=\frac{3 y^{2}+2 x y}{2 x y+x^{2}}$
Put $y=v x$ so that $\frac{d y}{d x}=v+x \frac{d v}{d x}$
On substituting, the given equation becomes
$v+x \frac{d v}{d x}=\frac{3 v^{2} x^{2}+2 v x^{2}}{2 v x^{2}+x^{2}}=\frac{3 v^{2}+2 v}{2 v+1}$

$$
\begin{array}{ll}
\Rightarrow \quad x \frac{d v}{d x}=\frac{3 v^{2}+2 v-2 v^{2}-v}{2 v+1} & \Rightarrow x \frac{d v}{d x}=\frac{v^{2}+v}{2 v+1} \Rightarrow\left(\frac{2 v+1}{v^{2}+v}\right) d v=\frac{d x}{x} \\
\Rightarrow \quad \int\left(\frac{2 v+1}{v^{2}+v}\right) d v=\int \frac{d x}{x} & \Rightarrow \log \left(v^{2}+v\right) \log x+\log c \\
\Rightarrow \quad v^{2}+v=c x & \Rightarrow \frac{y^{2}}{x^{2}}+\frac{y}{x}=c x
\end{array}
$$

$$
\Rightarrow \quad y^{2}+x y=c x^{3}
$$

Q6: Solve the equation:

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y}{x}+x \sin \frac{y}{x} \tag{1}
\end{equation*}
$$

Sol: Putting

$$
\begin{aligned}
& y=v x \text { in (1) so that } \frac{d y}{d x}=v+x \frac{d v}{d x} \\
& v+x \frac{d v}{d x}=v+x \sin v \\
& x \frac{d v}{d x}=x \sin v \quad \Rightarrow \quad \frac{d v}{d x}=\sin v
\end{aligned}
$$

Separating the variable, we get

$$
\begin{array}{cl}
\frac{d v}{\sin v}=d x & \Rightarrow \\
\log \tan \frac{v}{2}=x+C \quad & \int \operatorname{cosec} v d v=\int d x+C \\
& \log \tan \frac{y}{2 x}=x+C
\end{array}
$$

Q7: Solve:

$$
\frac{d y}{d x}=\frac{x+2 y-3}{2 x+y-3}
$$

Putting

$$
x=X+h, \quad y=Y+k
$$

The given equation reduces to

$$
\begin{align*}
\therefore \quad \frac{d Y}{d X} & =\frac{(X+h)+2(Y+k)-3}{2(X+h)+(Y+k)-3} \\
& =\frac{X+2 Y+(h+2 k-3)}{2 X+Y+(2 h+k-3)}
\end{align*} \quad\left(\frac{1}{2} \neq \frac{2}{1}\right)
$$

Now choose h and k so that $h+2 k-3=0,2 h+k-3=0$
Solving these equations we get $h=k=1$

$$
\begin{equation*}
\frac{d Y}{d X}=\frac{X+2 Y}{2 X+Y} \tag{2}
\end{equation*}
$$

Put $Y=v X$, so that $\frac{d Y}{d X}=v+X \frac{d v}{d X}$
The equation (2) is transformed as

$$
\begin{array}{r}
v+X \frac{d v}{d X}=\frac{X+2 v X}{2 X+v X}=\frac{1+2 v}{2+v} \\
X \frac{d v}{d X}=\frac{1+2 v}{2+v}-v=\frac{1-v^{2}}{2+v} \\
\Rightarrow \quad \frac{1}{2} \frac{1}{(1+v)} d v+\frac{3}{2} \frac{1}{1-v} d v=\frac{d X}{X}
\end{array} \quad \Rightarrow \quad\left(\frac{2+v}{1-v^{2}}\right) d v=\frac{d X}{X}
$$

(Partial fractions)
On integrating, we have

$$
\begin{aligned}
& \frac{1}{2} \log (1+v)-\frac{3}{2} \log (1-v)=\log X+\log C \\
& \Rightarrow \log \frac{1+v}{(1-v)^{3}}=\log C^{2} X^{2} \quad \Rightarrow \quad \frac{1+v}{(1-v)^{3}}=C^{2} X^{2} \\
& \frac{1+\frac{Y}{X}}{\left(1-\frac{Y}{X}\right)^{3}}=C^{2} X^{2} \\
& \Rightarrow \quad \frac{X+Y}{(X-Y)^{3}}=C^{2} \text { or } \quad X+Y=C^{2}(X-Y)^{3} \\
& \text { Put } \\
& X=x-1 \text { and } Y=y-1 \quad \Rightarrow \quad x+y-2=a(x-y)^{3} \\
& \text { Ans. }
\end{aligned}
$$

Q8: Solve:

$$
(x+2 y)(d x-d y)=d x+d y
$$

Sol:

$$
\begin{gather*}
(x+2 y)(d x-d y)=d x+d y \Rightarrow(x+2 y-1) d x-(x+2 y+1) d y=0 \\
\frac{d y}{d x}=\frac{x+2 y-1}{x+2 y+1} \tag{1}
\end{gather*}
$$

Hence

$$
\frac{a}{A}=\frac{b}{B} \quad \text { i.e., }\left(\frac{1}{1}=\frac{2}{2}\right)
$$

(Case of failure)
Now put $x+2 y=z$ so that $1+2 \frac{d y}{d x}=\frac{d z}{d x}$
Equation (1) becomes

$$
\begin{aligned}
& \frac{1}{2} \frac{d z}{d x}-\frac{1}{2} & =\frac{z-1}{z+1} \\
\Rightarrow & \frac{z+1}{3 z-1} d z & =d x
\end{aligned} \Rightarrow \quad \frac{d z}{d x}=2 \frac{(z-1)}{z+1}+1=\frac{3 z-1}{z+1}
$$

On integrating,

$$
\begin{aligned}
\frac{z}{3}+\frac{4}{9} \log (3 z-1) & =x+C \\
3 z+4 \log (3 z-1) & =9 x+9 C \\
4 \log (3 x+6 y-1) & =9 x+9 C \\
3 x-3 y+a & =2 \log (3 x+6 y-1)
\end{aligned}
$$

$$
\Rightarrow \quad 3(x+2 y)+4 \log (3 x+6 y-1)=9 x+9 C
$$

LINEAR DIFFERENTIAL EQUATIONS

$$
\frac{d y}{d x}+P y=Q
$$

Q9: Solve:

$$
(x+1) \frac{d y}{d x}-y=e^{x}(x+1)^{2}
$$

Sol:

$$
\frac{d y}{d x}-\frac{y}{x+1}=e^{x}(x+1)
$$

Integrating factor $=e^{-\int \frac{d x}{x+1}}=e^{-\log (x+1)}=e^{\log (x+1)^{-1}}=\frac{1}{x+1}$

The solution is

$$
\begin{aligned}
y \cdot \frac{1}{x+1} & =\int e^{x} \cdot(x+1) \cdot \frac{1}{x+1} d x=\int e^{x} d x \\
\frac{y}{x+1} & =e^{x}+C
\end{aligned}
$$

Q10: Solve a differential equation

$$
\left(x^{3}-x\right) \frac{d y}{d x}-\left(3 x^{2}-1\right) y=x^{5}-2 x^{3}+x
$$

Sol: We have,

$$
\begin{aligned}
& \left(x^{3}-x\right) \frac{d y}{d x}-\left(3 x^{2}-1\right) y=x^{5}-2 x^{3}+x \\
& \frac{d y}{d x}-\frac{3 x^{2}-1}{x^{3}-x} y=\frac{x^{5}-2 x^{3}+x}{x^{3}-x} \Rightarrow \frac{d y}{d x}-\frac{3 x^{2}-1}{x^{3}-x} y=x^{2}-1 \\
& \text { I.F. }=e^{\int \frac{3 x^{2}-1}{x^{3}-x} d x}=e^{-\log \left(x^{3}-x\right)}=e^{\log \left(x^{3}-x\right)^{-1}}=\frac{1}{x^{3}-x}
\end{aligned}
$$

Its solution is

$$
\begin{aligned}
& y(\text { I.F. })=\int Q(I . F .) d x+C & \Rightarrow y\left(\frac{1}{x^{3}-x}\right)=\int \frac{x^{2}-1}{x^{3}-x} d x+C \\
\Rightarrow & \frac{y}{x^{3}-x}=\int \frac{x^{2}-1}{x\left(x^{2}-1\right)} d x+C & \Rightarrow \frac{y}{x^{3}-x}=\int \frac{1}{x} d x+C \\
\Rightarrow & \frac{y}{x^{3}-x}=\log x+C & \Rightarrow y=\left(x^{3}-x\right) \log x+\left(x^{3}-x\right) C
\end{aligned}
$$

Q11: Solve:

$$
x^{2} d y+y(x+y) d x=0
$$

Sol: We have,

$$
\begin{aligned}
& x^{2} d y+y(x+y) d x=0 \\
& \frac{d y}{d x}+\frac{y}{x}=-\frac{y^{2}}{x^{2}} \quad \Rightarrow \quad \frac{1}{y^{2}} \frac{d y}{d x}+\frac{1}{x y}=-\frac{1}{x^{2}}
\end{aligned}
$$

Put

$$
-\frac{1}{y}=z \text { so that } \frac{1}{y^{2}} \frac{d y}{d x}=\frac{d z}{d x}
$$

The given equation reduces to a linear differential equation in z.

$$
\begin{aligned}
\frac{d z}{d x}-\frac{z}{x} & =-\frac{1}{x^{2}} \\
\text { I.F. } & =e^{-\int \frac{1}{x} d x}=e^{-\log x}=e^{\log 1 / x}=\frac{1}{x} .
\end{aligned}
$$

Hence the solution is

$$
\begin{array}{lll}
& z \cdot \frac{1}{x}=\int-\frac{1}{x^{2}} \cdot \frac{1}{x} d x+C & \Rightarrow \\
\Rightarrow \quad & \frac{z}{x}=\int-x^{-3} d x+C \\
x y & =-\frac{x^{-2}}{-2}+C & \frac{1}{x y}=-\frac{1}{2 x^{2}}-C
\end{array}
$$

Q12: Solve:

$$
\frac{d y}{d x}-\frac{\tan y}{1+x}=(1+x) e^{x} \sec y .
$$

Sol:

$$
\begin{align*}
\frac{d y}{d x}-\frac{\tan y}{1+x} & =(1+x) e^{x} \sec y \\
\cos y \frac{d y}{d x}-\frac{\sin y}{1+x} & =(1+x) e^{x} \tag{1}
\end{align*}
$$

Put

$$
\sin y=z \text {, so that } \cos y \frac{d y}{d x}=\frac{d z}{d x}
$$

(1) becomes

$$
\frac{d z}{d x}-\frac{z}{1+x}=(1+x) e^{x}
$$

$$
\text { I.F. }=e^{-\int \frac{1}{1+x} d x}=e^{-\log (1+x)}=e^{\log / 1 / 1 x}=\frac{1}{1+x}
$$

Solution is

$$
z \cdot \frac{1}{1+x}=\int(1+x) e^{x} \cdot \frac{1}{1+x} d x+C=\int e^{x} d x+C
$$

$$
\frac{\sin y}{1+x}=e^{x}+C
$$

Q13: Solve the differential equation. $y \log y d x+(x-\log y) d y=0$

Sol: We have

$y \log y d x+(x-\log y) d y=0$

$$
\frac{d x}{d y}=\frac{-x+\log y}{y \log y} \quad \Rightarrow \quad \frac{d x}{d y}=\frac{-x}{y \log y}+\frac{\log y}{y \log y}
$$

$$
\frac{d x}{d y}+\frac{x}{y \log y}=\frac{1}{y}
$$

I.F. $=e^{\int \frac{1}{y \log y} d y}=e^{\log (\log y)}=\log y$

Its solution is

$$
\begin{aligned}
& x \cdot \log y=\int \frac{1}{y}(\log y) d y \\
& x \cdot \log y=\frac{(\log y)^{2}}{2}+C
\end{aligned}
$$

Q14: Solve

$$
r \sin \theta-\frac{d r}{d \theta} \cos \theta=r^{2}
$$

Sol: The given equation can be written as

$$
\begin{equation*}
-\frac{d r}{d \theta} \cos \theta+r \sin \theta=r^{2} \tag{1}
\end{equation*}
$$

Dividing (1) by $r^{2} \cos \theta$, we get $-r^{-2} \frac{d r}{d \theta}+r^{-1} \tan \theta=\sec \theta$

(2)

Putting

$$
\begin{aligned}
& r^{-1}=v \text { so that }-r^{-2} \frac{d r}{d \theta}=\frac{d v}{d \theta} \text { in (2), we get } \\
& \frac{d v}{d \theta}+v \tan \theta=\sec \theta \\
& \text { I.F }=e^{\int \tan \theta d \theta}=e^{\log \sec \theta}=\sec \theta
\end{aligned}
$$

Solution is

$$
\begin{array}{rlrl}
v \sec \theta & =\int \sec \theta, \sec \theta+C \quad \Rightarrow & v \sec \theta=\int \sec ^{2} \theta d \theta+C \\
\frac{\sec \theta}{r} & =\tan \theta+C \quad \Rightarrow \quad r^{-1}=(\sin \theta+C \cos \theta) \\
r & =\frac{1}{\sin \theta+C \cos \theta}
\end{array}
$$

EXACT DIFFERENTIAL EQUATION

An exact differential equation is formed by directly differentiating its primitive (solution) without any other process

$$
M d x+N d y=0
$$

is said to be an exact differential equation if it satisfies the following condition

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

where $\frac{\partial M}{\partial y}$ denotes the differential co-efficient of M with respect to y keeping x constant and $\frac{\partial N}{\partial x}$, the differential co-efficient of N with respect to x, keeping y constant.

Q15: Solve

$$
\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=0
$$

Sol: Here

$$
\begin{aligned}
& M=5 x^{4}+3 x^{2} y^{2}-2 x y^{3}, \quad N=2 x^{3} y-3 x^{2} y^{2}-5 y^{4} \\
& \frac{\partial M}{\partial y}=6 x^{2} y-6 x y^{2}, \quad \frac{\partial N}{\partial x}=6 x^{2} y-6 x y^{2}
\end{aligned}
$$

Since,

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}, \text { the given equation is exact. }
$$

Now $\int M d x+\int($ terms of N is not containing $x) d y=C$

$$
\begin{array}{rlrl}
& & \int\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\int-5 y^{4} d y & =C \\
\Rightarrow & x^{5}+x^{3} y^{2}-x^{2} y^{3}-y^{5} & =C
\end{array}
$$

Q16: Solve:

$$
[1+\log (x y)] d x+\left[1+\frac{x}{y}\right] d y=0
$$

Sol:

$$
[1+\log (x y)] d x+\left[1+\frac{x}{y}\right] d y=0
$$

which is in the form $M d x+N d y=0$

$$
\begin{array}{lll}
M=[1+\log x+\log y] & \text { and } & N=1+\frac{x}{y} \\
\Rightarrow \frac{\partial M}{\partial y}=\frac{1}{y} \text { and } \Rightarrow \frac{\partial N}{\partial x}=\frac{1}{y} \Rightarrow \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{array}
$$

Hence the given differential equation is exact.
\therefore Solution is $\quad \int_{y \text { constant }} M d x+\int N($ terms not containing $x) d y=C$
y constant

$$
\begin{array}{ll}
\therefore & \int(1+\log x+\log y) d x+\int d y=C \\
\Rightarrow & x+\int \log x d x+\int \log y d x+y=C \tag{1}
\end{array}
$$

Now, $\quad \int \log x d x=\int \log x .(1) d x=(\log x) x-\int\left[\frac{d}{d x}(\log x) x\right] d x=x \log x-\int \frac{1}{x} x d x$

$$
=x \log x-\int d x=x \log x-x=x[\log x-1]
$$

\therefore Equation (1) becomes $\Rightarrow x+x \log x-x+x \log y+y=C$

$$
x[\log x+\log y]+y=C \Rightarrow x \log x y+y=C
$$

Q17: Solve:

$(2 x \log x-x y) d y+2 y d x=0$

Sol:

$$
\begin{aligned}
M & =2 y, & N & =2 x \log x-x y \\
\frac{\partial M}{\partial y} & =2, & \frac{\partial N}{\partial x} & =2(1+\log x)-y
\end{aligned}
$$

Here, $\quad \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{2-2-2 \log x+y}{2 x \log x-x y}=\frac{-(2 \log x-y)}{x(2 \log x-y)}=-\frac{1}{x}=f(x)$

$$
\text { I.F. }=e^{\int f(x) d x}=e^{\int-\frac{1}{x} d x}=e^{-\log x}=e^{\log x^{-1}}=x^{-1}=\frac{1}{x}
$$

On multiplying the given differential equation (1) by $\frac{1}{x}$, we get

$$
\begin{array}{rlrl}
& & \frac{2 y}{x} d x+(2 \log x-y) d y & =0 \quad \\
\Rightarrow & 2 y \log x-\frac{1}{2} y^{2} & =c
\end{array}
$$

Q18: Solve:

$$
\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0
$$

Sol:

Here $M=y^{4}+2 y ; \quad \quad N=x y^{3}+2 y^{4}-4 x$

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=4 y^{3}+2 ; \quad \frac{\partial N}{\partial x}=y^{3}-4 \\
& \frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}=\frac{\left(y^{3}-4\right)-\left(4 y^{3}+2\right)}{y^{4}+2 y}=\frac{-3\left(y^{3}+2\right)}{y\left(y^{3}+2\right)}=-\frac{3}{y}=f(y) \\
& \text { I.F. }=e^{\int f(y) d y}=e^{\int \frac{3}{y} d y}=e^{-3 \log y}=e^{\log y^{-3}}=y^{-3}=\frac{1}{y^{3}}
\end{aligned}
$$

On multiplying the given equation (1) by $\frac{1}{y^{3}}$ we get the exact differential equation.

$$
\begin{aligned}
& \left(y+\frac{2}{y^{2}}\right) d x+\left(x+2 y-\frac{4 x}{y^{3}}\right) d y=0 \\
& \int\left(y+\frac{2}{y^{2}}\right) d x+\int 2 y d y=c \quad \Rightarrow \quad x\left(y+\frac{2}{y^{2}}\right)+y^{2}=c
\end{aligned}
$$

Q19: Solve

$$
y\left(x y+2 x^{2} y^{2}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0
$$

(1)

Sol: Dividing (1) by $x y$, we get

$$
\begin{align*}
& y(1+2 x y) d x+x(1-x y) d y=0 \tag{2}\\
& \mathrm{M}=y f_{1}(x y), \quad \mathrm{N}=x f_{2}(x y)
\end{align*}
$$

$$
\text { I.F }=\frac{1}{\mathrm{M} x-\mathrm{N} y}=\frac{1}{x y(1+2 x y)-x y(1-x y)}=\frac{1}{3 x^{2} y^{2}}
$$

On multiplying (2) by $\frac{1}{3 x^{2} y^{2}}$, we have an exact differential equation

$$
\begin{array}{ll}
\left(\frac{1}{3 x^{2} y}+\frac{2}{3 x}\right) d x+\left(\frac{1}{3 x y^{2}}-\frac{1}{3 y}\right) d y=0 & \Rightarrow \int\left(\frac{1}{3 x^{2} y}+\frac{2}{3 x}\right) d x+\int-\frac{1}{3 y} d y=c \\
\Rightarrow \quad-\frac{1}{3 x y}+\frac{2}{3} \log x-\frac{1}{3} \log y=c & \Rightarrow-\frac{1}{x y}+2 \log x-\log y=b
\end{array}
$$

Q20: Solve

$$
\left(y^{3}-2 x^{2} y\right) d x+\left(2 x y^{2}-x^{3}\right) d y=0
$$

Sol: We have

$$
\begin{aligned}
\left(y^{3}-2 x^{2} y\right) d x+\left(2 x y^{2}-x^{3}\right) d y & =0 \\
y^{2}(y d x+2 x d y)+x^{2}(-2 y d x-x d y) & =0
\end{aligned}
$$

Here $m=0, h=2, a=1, b=2, \quad m^{\prime}=2, n^{\prime}=0, a^{\prime}=-2, b^{\prime}=-1$

$$
\begin{array}{ll}
& \frac{0+h+1}{1}=\frac{2+k+1}{2} \text { and } \frac{2+h+1}{-2}=\frac{0+k+1}{-1} \\
\Rightarrow & 2 h+2=2+k+1 \text { and } h+3=2 k+2 \\
\Rightarrow & 2 h-k=1 \text { and } h-2 k=-1
\end{array}
$$

On solving $h=k=1$. Integrating Factor $=x y$
Multiplying the given equation by $x y$, we get

$$
\left(x y^{4}-2 x^{3} y^{2}\right) d x+\left(2 x^{2} y^{3}-x^{4} y\right) d y=0
$$

which is an exact differential equation.

$$
\begin{aligned}
& \int\left(x y^{4}-2 x^{3} y^{2}\right) d x=C \quad \Rightarrow \quad \frac{x^{2} y^{4}}{2}-\frac{2 x^{4} y^{2}}{4}=C \\
& x^{2} y^{4}-x^{4} y^{2}=C^{\prime} \quad \Rightarrow \quad x^{2} y^{2}\left(y^{2}-x^{2}\right)=C^{\prime}
\end{aligned}
$$

Q21: Solve:

$$
\frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}
$$

Sol:

$$
\begin{equation*}
\left(x^{3}+y^{3}\right) d x-\left(x y^{2}\right) d y=0 \tag{1}
\end{equation*}
$$

Here

$$
M=x^{3}+y^{3}, \quad N=-x y^{2}
$$

$$
\text { I.F. }=\frac{1}{M x+N y}=\frac{1}{x\left(x^{3}+y^{3}\right)-x y^{2}(y)}=\frac{1}{x^{4}}
$$

Multiplying (1) by $\frac{1}{x^{4}}$ we get $\frac{1}{x^{4}}\left(x^{3}+y^{3}\right) d x+\frac{1}{x^{4}}\left(-x y^{2}\right) d y=0$

$$
\Rightarrow \quad \begin{array}{r}
\left(\frac{1}{x}+\frac{y^{3}}{x^{4}}\right) d x-\frac{y^{2}}{x^{3}} d y=0, \text { which is an exact differential equation. } \\
\int\left(\frac{1}{x}+\frac{y^{3}}{x^{4}}\right) d x=c \quad \Rightarrow \quad \log x-\frac{y^{3}}{3 x^{3}}=c
\end{array}
$$

WRONSKIAN

We know that

$$
W\left(y_{1}, y_{2}, x\right)=\left|\begin{array}{ll}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right|=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)
$$

(1) If $W\left(y_{1}, y_{2}, x\right)=0$, then $y_{1}(x)$ and $y_{2}(x)$ are linearly dependent.
(2) If $W\left(y_{1}, y_{2}, x\right) \neq 0$, then $y_{1}(x), y_{2}(x)$ are linearly independent.

Q22: Check whether the following functions are linearly independent or not

$$
e^{x} \cos x, e^{x} \sin x
$$

Sol: We have,

$$
\begin{aligned}
y_{1} & =e^{x} \cos x, y_{2}=e^{x} \sin x \\
y_{1}^{\prime} & =e^{x} \cos x-e^{x} \sin x \text { and } y_{2}^{\prime}=e^{x} \sin x+e^{x} \cos x \\
\mathrm{~W}\left(y_{1} y_{2}\right) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{x} \cos x & e^{x} \sin x \\
e^{x} \cos x-e^{x} \sin x & e^{x} \sin x+e^{x} \cos x
\end{array}\right| \\
& =e^{2 x}\left|\begin{array}{cc}
\cos x & \sin x \\
\cos x-\sin x & \sin x+\cos x
\end{array}\right| \\
& =e^{2 x}\left(\sin x \cdot \cos x+\cos ^{2} x-\sin x \cdot \cos x+\sin ^{2} x\right) \\
& =e^{2 x} \neq 0
\end{aligned}
$$

Hence, $e^{x} \cos x$ and $e^{x} \sin x$ are linearly independent.

SECOND ORDER DIFFERENTIAL EQUATION:

$$
\begin{aligned}
& \text { Complete Solution = Complementary Function + Particular Integral. } \\
& \Rightarrow \quad y \boldsymbol{y}=\text { C.F. }+ \text { P.I. }
\end{aligned}
$$

Q23: Solve

$$
\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+15 y=0
$$

Sol: Given equation can be written as

$$
\left(D^{2}-8 D+15\right) y=0
$$

Here auxiliary equation is $m^{2}-8 m+15=0$

$$
\Rightarrow \quad(m-3)(m-5)=0 \quad \therefore m=3,5
$$

Hence, the required solution is

$$
y=C_{1} e^{3 x}+C_{2} e^{5 x}
$$

Q24: Solve

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0
$$

Sol: Given equation can be written as

$$
\left(D^{2}-6 D+9\right) y=0
$$

A.E. is $m^{2}-6 m+9=0 \quad \Rightarrow \quad(m-3)^{2}=0 \quad \Rightarrow \quad m=3,3$

Hence, the required solution is

$$
y=\left(C_{1}+C_{2} x\right) e^{3 x}
$$

Q25: Solve

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=0 \\
& y=2 \text { and } \frac{d y}{d x}=\frac{d^{2} y}{d x^{2}} \text { when } x=0
\end{aligned}
$$

Sol: Here the auxiliary equation is

$$
m^{2}+4 m+5=0
$$

Its root are $-2 \pm i$
The complementary function is

$$
\begin{equation*}
y=e^{-2 x}(A \cos x+B \sin x) \tag{1}
\end{equation*}
$$

On putting $y=2$ and $x=0$ in (1), we get

$$
2=A
$$

On putting $A=2$ in (1), we have

$$
\begin{equation*}
y=e^{-2 x}[2 \cos x+B \sin x] \tag{2}
\end{equation*}
$$

On differentiating (2), we get

$$
\begin{aligned}
\frac{d y}{d x} & =e^{-2 x}[-2 \sin x+B \cos x]-2 e^{-2 x}[2 \cos x+B \sin x] \\
& =e^{-2 x}[(-2 B-2) \sin x+(B-4) \cos x] \\
\frac{d^{2} y}{d x^{2}} & =e^{-2 x}[(-2 B-2) \cos x-(B-4) \sin x] \\
& \quad-2 e^{-2 x}[(-2 B-2) \sin x+(B-4) \cos x] \\
& =e^{-2 x}[(-4 B+6) \cos x+(3 B+8) \sin x]
\end{aligned}
$$

But

$$
\frac{d y}{d x}=\frac{d^{2} y}{d x^{2}}
$$

$$
e^{-2 x}[(-2 B-2) \sin x+(B-4) \cos x]=e^{-2 x}[(-4 B+6) \cos x+(3 B+8) \sin x]
$$

On putting $x=0$, we get

$$
B-4=-4 B+6 \quad \Rightarrow \quad B=2
$$

(2) becomes,

$$
\begin{aligned}
& y=e^{-2 x}[2 \cos x+2 \sin x] \\
& y=2 e^{-2 x}[\sin x+\cos x]
\end{aligned}
$$

Q26: Solve

$$
: \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=5 e^{3 x}
$$

Sol:

$$
\left(D^{2}+6 D+9\right) y=5 e^{3 x}
$$

Auxiliary equation is

$$
\begin{aligned}
& m^{2}+6 m+9=0 \Rightarrow \quad(m+3)^{2}=0 \Rightarrow m=-3,-3, \\
& \text { C.F. }=\left(C_{1}+C_{2} x\right) e^{-3 x} \\
& \text { P.I. }=\frac{1}{D^{2}+6 D+9} \cdot 5 \cdot e^{3 x}=5 \frac{e^{3 x}}{(3)^{2}+6(3)+9}=\frac{5 e^{3 x}}{36}
\end{aligned}
$$

$$
\text { The complete solution is } \quad y=\left(C_{1}+C_{2} x\right) e^{-3 x}+\frac{5 e^{3 x}}{36}
$$

Q27: Solve:

$\left(D^{2}+4\right) y=\cos 2 x$
Solution. $\left(D^{2}+4\right) y=\cos 2 x$
Auxiliary equation is $m^{2}+4=0$

$$
m= \pm 2 i, \quad \text { C.F. }=A \cos 2 x+\text { B } \sin 2 x
$$

P.I. $=\frac{1}{D^{2}+4} \cos 2 x=x \cdot \frac{1}{2 D} \cos 2 x=\frac{x}{2}\left(\frac{1}{2} \sin 2 x\right)=\frac{x}{4} \sin 2 x$

Complete solution is $y=A \cos 2 x+B \sin 2 x+\frac{x}{4} \sin 2 x$

Q28: Solve

$$
\left(D^{2}-4 D+4\right) y=x^{3} e^{2 x}
$$

Sol:

A.E. is $m^{2}-4 m+4=0 \Rightarrow(m-2)^{2}=0 \quad \Rightarrow \quad m=2,2$
C.F. $=\left(C_{1}+C_{2} x\right) e^{2 x}$
P.I. $=\frac{1}{D^{2}-4 D+4} x^{3} \cdot e^{2 x}=e^{2 x} \frac{1}{(D+2)^{2}-4(D+2)+4} x^{3}$
$=e^{2 x} \frac{1}{D^{2}} x^{3}=e^{2 x} \cdot \frac{1}{D}\left(\frac{x^{4}}{4}\right)=e^{2 x} \cdot \frac{x^{5}}{20}$
The complete solution is $y=\left(C_{1}+C_{2} x\right) e^{2 x}+e^{2 x} \cdot \frac{x^{5}}{20}$

Q29: Solve the differential equation

$$
\frac{d^{3} y}{d x^{3}}-7 \frac{d^{2} y}{d x^{2}}+10 \frac{d y}{d x}=e^{2 x} \sin x
$$

Solution. $\quad \frac{d^{3} y}{d x^{3}}-7 \frac{d^{2} y}{d x^{2}}+10 \frac{d y}{d x}=e^{2 x} \sin x \quad \Rightarrow D^{3} y-7 D^{2} y+10 D y=e^{2 x} \sin x$
A.E. is

$$
\begin{aligned}
& \begin{array}{l}
m^{3}-7 m^{2}+10 m=0 \\
m \\
m(m-2)(m-5)=0
\end{array} \quad \Rightarrow \quad \begin{array}{c}
(m-2)\left(m^{2}-5 m\right)=0 \\
\text { C.F }
\end{array}=C_{1} e^{0 x}+C_{2} e^{2 x}+C_{3} e^{5 x} \\
\text { P.I. } & =\frac{1}{D^{3}-7 D^{2}+10 D} e^{2 x} \sin x=e^{2 x} \frac{1}{(D+2)^{3}-7(D+2)^{2}+10(D+2)} \cdot \sin x \\
& =e^{2 x} \frac{1}{D^{3}+6 D^{2}+12 D+8-7 D^{2}-28 D-28+10 D+20} \cdot \sin x \\
& =e^{2 x} \frac{1}{D^{3}-D^{2}-6 D} \sin x=e^{2 x} \frac{1}{\left(-1^{2}\right) D-\left(-1^{2}\right)-6 D} \sin x \\
& =e^{2 x} \frac{1}{-D+1-6 D} \sin x=e^{2 x} \frac{1}{1-7 D} \sin x=e^{2 x} \frac{1+7 D}{1-49 D^{2}} \sin x=e^{2 x} \frac{1+7 D}{1-49\left(-1^{2}\right)} \sin x \\
& =e^{2 x} \frac{1+7 D}{50} \sin x=\frac{e^{2 x}}{50}(\sin x+7 \cos x)
\end{aligned}
$$

Complete solution is

$$
\begin{aligned}
& y \\
= & =\text { C.F. }+ \text { P.I. } \\
\Rightarrow \quad y & =C_{1}+C_{2} e^{2 x}+C_{3} e^{5 x}+\frac{e^{2 x}}{50}(\sin x+7 \cos x)
\end{aligned}
$$

Q30: Solve

$$
\left(D^{2}+6 D+9\right) y=\frac{e^{-3 x}}{x^{3}} .
$$

Sol:

A.E. is $m^{2}+6 m+9=0$
$(m+3)^{2}=0$

$$
\begin{aligned}
& (m+3)^{2}=0 \\
& \text { C.F. }=\left(C_{1}+C_{2} x\right) e^{-3 x i}
\end{aligned}
$$

$$
m=-3,-3
$$

P.I. $=\frac{1}{D^{2}+6 D+9} \frac{e^{-3 x}}{x^{3}}=e^{-3 x} \frac{1}{(D-3)^{2}+6(D-3)+9} \frac{1}{x^{3}}$

$$
\begin{aligned}
& =e^{-3 x} \frac{1}{D^{2}-6 D+9+6 D-18+9} \frac{1}{x^{3}}=e^{-3 x} \frac{1}{D^{2}}\left(x^{-3}\right) \\
& =e^{-3 x} \frac{1}{D}\left(\frac{x^{-2}}{-2}\right)=e^{-3 x} \frac{x^{-1}}{(-2)(-1)}=\frac{e^{-3 x} x^{-1}}{2}=\frac{e^{-3 x}}{2 x}
\end{aligned}
$$

Hence, the solution is $y=\left(C_{1}+C_{2} x\right) e^{-3 x}+\frac{e^{-3 x}}{2 x}$

Q31: Solve

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x \sin x
$$

Sol: Auxiliary equation is

$$
m^{2}-2 m+1=0 \text { or } m=1,1
$$

C.F. $=\left(C_{1}+C_{2} x\right) e^{x^{-}}$
P.I. $=\frac{1}{D^{2}-2 D+1} x \cdot \sin x \quad\left(e^{i x}=\cos x+i \sin x\right)$
$=$ Imaginary part of $\frac{1}{D^{2}-2 D+1} x(\cos x+i \sin x)=$ Imaginary part of $\frac{1}{D^{2}-2 D+1} x \cdot e^{i x}$
$=$ Imaginary part of $e^{i x} \frac{1}{(D+i)^{2}-2(D+i)+1} \cdot x=$ Imaginary part of $e^{i x} \frac{1}{D^{2}-2(1-i) D-2 i} \cdot x$
$=$ Imaginary part of $e^{i x} \frac{1}{-2 i}\left[1-(1+i) D-\frac{1}{2 i} D^{2}\right]^{-1} \cdot x$
$=$ Imaginary part of $(\cos x+i \sin x)\left(\frac{i}{2}\right)[1+(1+i) D] x=\operatorname{Imaginary}$ part of $\frac{1}{2}(i \cos x-\sin x)[x+1+i]$
P.I $=\frac{1}{2} x \cos x+\frac{1}{2} \cos x-\frac{1}{2} \sin x$

Complete solution is $y=\left(C_{1}+C_{2} x\right) e^{x}+\frac{1}{2}(x \cos x+\cos x-\sin x)$

METHOD OF VARIATION OF PARAMETERS

Q32: Apply the method of variation of parameters to solve

$$
\frac{d^{2} y}{d x^{2}}+y=\tan x
$$

Sol: We have

$$
\frac{d^{2} y}{d x^{2}}+y=\tan x
$$

$$
\left(D^{2}+1\right) y=\tan x
$$

$$
\begin{aligned}
& \text { A.E. is } \quad m^{2}=-1 \quad \text { or } \quad m= \pm i \\
& \text { C.F. } \quad y=A \cos x+B \sin x
\end{aligned}
$$

Here,

$$
y_{1}=\cos x, \quad y_{2}=\sin x
$$

$$
y_{1} \cdot y_{2}^{\prime}-y_{1}^{\prime} \cdot y_{2}=\cos x(\cos x)-(-\sin x) \sin x=\cos ^{2} x+\sin ^{2} x=1
$$

P. I. $=u \cdot y_{1}+v \cdot y_{2}$ where
$u=\int \frac{-y_{2} \tan x}{y_{1} \cdot y_{2}^{\prime}-y_{1}^{\prime} \cdot y_{2}} d x=-\int \frac{\sin x \tan x}{1} d x=-\int \frac{\sin ^{2} x}{\cos x} d x=-\int \frac{1-\cos ^{2} x}{\cos x} d x$ $=\int(\cos x-\sec x) d x=\sin x-\log (\sec x+\tan x)$
$v=\int \frac{y_{1} \tan x}{y_{1} \cdot y_{2}^{\prime}-y_{1}^{\prime} \cdot y_{2}} d x=\int \frac{\cos x \cdot \tan x}{1} d x=\int \sin x d x=-\cos x$
P. I. $=$ u. $y_{1}+v . y_{2}$
$=[\sin x-\log (\sec x+\tan x)] \cos x-\cos x \sin x=-\cos x \log (\sec x+\tan x)$
Complete solution is

$$
y=A \cos x+B \sin x-\cos x \log (\sec x+\tan x)
$$

Q33: Solve by method of variation of parameters:

$$
\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}
$$

Solution.

$$
\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}
$$

A. E. is

$$
\left(m^{2}-1\right)=0
$$

$$
m^{2}=1, \quad m= \pm 1
$$

$$
\text { C. } F \text {. }=C_{1} e^{x}+C_{2} e^{-x}
$$

$$
\therefore \quad P . I=w y_{1}+v y_{2}
$$

Here,

$$
y_{1}=e^{x}, \quad y_{2}=e^{-x}
$$

and

$$
y_{1} \cdot y_{2}^{\prime}-y_{1}^{\prime} \cdot y_{2}=-e^{x} \cdot e^{-x}-e^{x} \cdot e^{-x}=-2
$$

$$
u=\int \frac{-y_{2} X}{y_{1} \cdot y_{2}^{\prime}-y_{1}^{\prime} \cdot y_{2}} d x=-\int \frac{e^{-x}}{-2} \times \frac{2}{1+e^{x}} d x
$$

$$
=\int \frac{e^{-x}}{1+e^{x}} d x=\int \frac{d x}{e^{x}\left(1+e^{x}\right)}=\int\left(\frac{1}{e^{x}}-\frac{1}{1+e^{x}}\right) d x
$$

$$
=\int e^{-x} d x-\int \frac{e^{-x}}{e^{-x}+1} d x=-e^{-x}+\log \left(e^{-x}+1\right)
$$

$$
v=\int \frac{y_{1} X}{y_{1} \cdot y_{2}^{\prime}-y_{1}^{\prime} \cdot y_{2}} d x=\int \frac{e^{x}}{-2} \frac{2}{1+e^{x}} d x=-\int \frac{e^{x}}{1+e^{x}} d x=-\log \left(1+e^{x}\right)
$$

$$
\text { P.I. }=\text { u. } y_{1}+v \cdot y_{2}=\left[-e^{-x}+\log \left(e^{-x}+1\right)\right] e^{x}-e^{-x} \log \left(1+e^{x}\right)
$$

$$
=-1+e^{x} \log \left(e^{-x}+1\right)-e^{-x} \log \left(e^{x}+1\right)
$$

Complete solution $=y=C_{1} e^{x}+C_{2} e^{-x}-1+e^{x} \log \left(e^{-x}+1\right)-e^{-x} \log \left(e^{x}+1\right)$

Q34: Solve by method of variation of parameters:

$$
\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x
$$

Sol: Given equation can be written as

$$
\left(D^{2}+1\right) y=\operatorname{cosec} x
$$

A.E. is

$$
m^{2}+1=0 \quad \Rightarrow \quad m= \pm i
$$

$$
\text { C.F. }=A \cos x+B \sin x
$$

Here

$$
\begin{gathered}
y_{1}=\cos x, \quad y_{2}=\sin x \\
\text { P.I. }=y_{1} u+y_{2} v \\
u=\int \frac{-y_{2} \cdot \operatorname{cosec} x d x}{y_{1} \cdot y_{2}^{\prime}-y_{1}^{\prime} \cdot y_{2}}=\int \frac{-\sin x \cdot \operatorname{cosec} x d x}{\cos x(\cos x)-(-\sin x)(\sin x)} \\
=\int \frac{-\sin x \cdot \frac{1}{\sin x} d x}{\cos ^{2} x+\sin ^{2} x}=-\int d x=-x \\
v=\int \frac{y_{1} \cdot X d x}{y_{1} \cdot y_{2}^{\prime}-y_{1}^{\prime} y_{2}}=\int \frac{\cos x \cdot \operatorname{cosec} x d x}{\cos x(\cos x)-(-\sin x)(\sin x)} \\
=\int \frac{\cos x \cdot \frac{1}{\sin x}}{\cos ^{2} x+\sin ^{2} x} d x=\int \frac{\cot x d x}{1}=\log \sin x
\end{gathered}
$$

$$
\text { P.I. }=u y_{1}+v y_{2}=-x \cos x+\sin x(\log \sin x)
$$

General solution $=$ C.F. + P.I.

$$
y=A \cos x+B \sin x-x \cos x+\sin x \cdot(\log \sin x)
$$

Q35: The equations of motions of a particle are given by

$$
\frac{d x}{d t}+\omega y=0 \quad \Rightarrow \quad \frac{d y}{d t}-\omega x=0
$$

Find the path of the particle and show that it is a circle.

Solution. On putting $\frac{d}{d t} \equiv \mathrm{D}$ in the equations, we have

$$
\begin{array}{r}
D x+\omega y=0 \\
-\omega x+D y=0 \tag{2}
\end{array}
$$

On multiplying (1) by w and (2) by D, we get

$$
\begin{align*}
\omega D x+\omega^{2} y & =0 \tag{3}\\
-\omega D x+D^{2} y & =0 \tag{4}
\end{align*}
$$

On adding (3) and (4), we obtain

$$
\begin{equation*}
\omega^{2} y+D^{2} y=0 \quad \Rightarrow \quad\left(D^{2}+\omega^{2}\right) y=0 \tag{5}
\end{equation*}
$$

Now, we have to solve (5) to get the value of y.
A.E. is $m^{2}+\omega^{2}=0 \quad \Rightarrow \quad m^{2}=-\omega^{2} \quad \Rightarrow \quad m= \pm i \omega$

$$
\begin{equation*}
y=A \cos w t+B \sin w t \tag{6}
\end{equation*}
$$

$\Rightarrow D y=-A \omega \sin \omega t+B \omega \cos w t$
On putting the value of $D y$ in (2), we get $-\omega x-A \omega \sin \omega t+B \omega \cos \omega t=0$

$$
\begin{array}{ll}
\Rightarrow & \omega x=-A \omega \sin \omega t+B \omega \cos \omega t \\
\Rightarrow & x=-A \sin \omega t+B \cos \omega t \tag{7}
\end{array}
$$

On squaring (6) and (7) and adding, we get

$$
\Rightarrow \quad \begin{aligned}
& x^{2}+y^{2}=A^{2}\left(\cos ^{2} \omega t+\sin ^{2} \omega t\right)+B^{2}\left(\cos ^{2} \omega t+\sin ^{2} \omega t\right) \\
& x^{2}+y^{2}=A^{2}+B^{2}
\end{aligned}
$$

This is the equation of circle.
Proved.

