Free Study Material from

All Lab Experiments

All Lab

Experiments

Mathematical Physics - III Chapter -1 Complex Analysis

Support us by Donating at the link "DONATIONS" given on the Main Menu

Even the smallest contribution of you will Help us keep Running

Chapter 1
 Complex Analysis

Complex Analysis: Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable. Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem. Application in solving Definite

Integrals.
(30 Lectures)

Q1:
Find real numbers x and y such that $3 x+2 i y-i x+5 y=7+5 i$.

Sol: The given equation can be written as

$$
3 x+5 y+i(2 y-x)=7+5 i .
$$

Then equating real and imaginary parts,

$$
3 x+5 y=7,2 y-x=5 .
$$

Solving simultaneously,

$$
x=-1, y=2 \text {. }
$$

Q2: Prove:

(a) $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}$, (b) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.

Sol:

Let $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$. Then
(a) $\overline{z_{1}+z_{2}}=\overline{x_{1}+i y_{1}+x_{2}+i y_{2}}=\overline{x_{1}+x_{2}+i\left(y_{1}+y_{2}\right)}$

$$
=x_{1}+x_{2}-i\left(y_{1}+y_{2}\right)=x_{1}-i y_{1}+x_{2}-i y_{2}=\overline{x_{1}+i y_{1}}+\overline{x_{2}+i y_{2}}=\bar{z}_{1}+\bar{z}_{2}
$$

(b) $\left|z_{1} z_{2}\right|=\left|\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)\right|=\left|x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+y_{1} x_{2}\right)\right|$

$$
=\sqrt{\left(x_{1} x_{2}-y_{1} y_{2}\right)^{2}+\left(x_{1} y_{2}+y_{1} x_{2}\right)^{2}}=\sqrt{\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)}=\sqrt{x_{1}^{2}+y_{1}^{2}} \sqrt{x_{2}^{2}+y_{2}^{2}}=\left|z_{1}\right|\left|z_{2}\right|
$$

Q3: Prove:

(a) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$,
(b) $\left|z_{1}+z_{2}+z_{3}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|$,
(c) $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$
and give a graphical interpretation.

Sol (a):

Analytically. Let $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$. Then we must show that

$$
\sqrt{\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}} \leq \sqrt{x_{1}^{2}+y_{1}^{2}}+\sqrt{x_{2}^{2}+y_{2}^{2}}
$$

Squaring both sides, this will be true if
i.e., if

$$
\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2} \leq x_{1}^{2}+y_{1}^{2}+2 \sqrt{\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)}+x_{2}^{2}+y_{2}^{2}
$$

$$
x_{1} x_{2}+y_{1} y_{2} \leq \sqrt{\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)}
$$

or if (squaring both sides again)

$$
x_{1}^{2} x_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2}+y_{1}^{2} y_{2}^{2} \leq x_{1}^{2} x_{2}^{2}+x_{1}^{2} y_{2}^{2}+y_{1}^{2} x_{2}^{2}+y_{1}^{2} y_{2}^{2}
$$

or

$$
2 x_{1} x_{2} y_{1} y_{2} \leq x_{1}^{2} y_{2}^{2}+y_{1}^{2} x_{2}^{2}
$$

But this is equivalent to $\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \geq 0$, which is true. Reversing the steps, which are reversible, proves the result.
Graphically. The result follows graphically from the fact that $\left|z_{1}\right|,\left|z_{2}\right|,\left|z_{1}+z_{2}\right|$ represent the lengths of the sides of a triangle (see Fig. 1-14) and that the sum of the lengths of two sides of a triangle is greater than or equal to the length of the third side.

Fig. 1-14
(b) Analytically. By part (a),

$$
\left|z_{1}+z_{2}+z_{3}\right|=\left|z_{1}+\left(z_{2}+z_{3}\right)\right| \leq\left|z_{1}\right|+\left|z_{2}+z_{3}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|
$$

Graphically. The result is a consequence of the geometric fact that, in a plane, a straight line is the shortest distance between two points O and P (see Fig. 1-15).

Fig. 1-15

(c)

Analytically. By part (a), $\left|z_{1}\right|=\left|z_{1}-z_{2}+z_{2}\right| \leq\left|z_{1}-z_{2}\right|+\left|z_{2}\right|$. Then $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$. An equivalent result obtained on replacing z_{2} by $-z_{2}$ is $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$.
Graphically. The result is equivalent to the statement that a side of a triangle has length greater than or equal to the difference in lengths of the other two sides.

Q4: Simplify the following:

(a) i^{49},
(b) i^{103}.

Sol: (a)

We divide 49 by 4 and we get

$$
\begin{aligned}
& 49=4 \times 12+1 \\
& i^{49}=i^{4 \times 12+1}=\left(i^{4}\right)^{12}\left(i^{1}\right)=(1)^{12}(i)=i
\end{aligned}
$$

(b) we divide 103 by 4 , we get

$$
\begin{aligned}
& 103=4 \times 25+3 \\
& i^{103}=i^{4 \times 25+3}=\left(i^{4}\right)^{25}\left(i^{3}\right)=(1)^{25}(-i)=-i
\end{aligned}
$$

Q5: Multiply:

$$
3+4 i \text { by } 7-3 i
$$

Sol:

Let $z_{1}=3+4 i$ and $z_{2}=7-3 i$

$$
\begin{array}{rlr}
z_{1} \cdot z_{2} & =(3+4 i) \cdot(7-3 i) & \\
& =21-9 i+28 i-12 i^{2} \\
& =21-9 i+28 i-12(-1) & \\
& =21-9 i+28 i+12 & \\
& =33+19 i & \\
& & \\
& & \\
& & \\
\hline
\end{array}
$$

Q6: Divide:

$1+i$ by $3+4 i$.

Sol:

$$
\begin{aligned}
\frac{1+i}{3+4 i} & =\frac{1+i}{3+4 i} \times \frac{3-4 i}{3-4 i} \\
& =\frac{3-4 i+3 i-4 i^{2}}{9-16 i^{2}} \\
& =\frac{3-i+4}{9+16}=\frac{7}{25}-\frac{1}{25} i
\end{aligned}
$$

Q7:
If $a^{2}+b^{2}+c^{2}=1$ and $b+i c=(1+a) z$, prove that $\frac{a+i b}{1+c}=\frac{1+i z}{1-i z}$.

Sol:Here, we have

$$
\begin{aligned}
& b+i c=(1+a) z \Rightarrow z=\frac{b+i c}{1+a} \\
& \frac{1+i z}{1-i z}=\frac{1+i \frac{b+i c}{1+a}}{1-i \frac{b+i c}{1+a}}=\frac{1+a+i b-c}{1+a-i b+c} \\
& \\
& =\frac{[(1+a+i b)-c]}{(1+a+c-i b)} \times \frac{(1+a+i b+c)}{(1+a+c+i b)}=\frac{(1+a+i b)^{2}-c^{2}}{(1+a+c)^{2}+b^{2}} \\
& \\
& =\frac{1+a^{2}-b^{2}+2 a+2 i b+2 i a b-c^{2}}{1+a^{2}+c^{2}+2 a+2 c+2 a c+b^{2}}=\frac{1+a^{2}-b^{2}-c^{2}+2 a+2 i b+2 i a b}{1+\left(a^{2}+b^{2}+c^{2}\right)+2 a+2 c+2 a c}
\end{aligned}
$$

Putting the value of $a^{2}+b^{2}+c^{2}=1$ in the above, we get
$=\frac{1+a^{2}-\left(1-a^{2}\right)+2 a+2 i b+2 i a b}{1+1+2 a+2 c+2 a c}=\frac{2\left(a^{2}+a+i b+i a b\right)}{2(1+a+c+a c)}=\frac{2(1+a)(a+i b)}{2(1+a)(1+c)}=\frac{a+i b}{1+c}$
Proved.
Q8:

$$
\begin{aligned}
& \text { If } z=\cos \theta+i \sin \theta \text {, prove that } \\
& \frac{2}{1+z}=1-i \tan \frac{\theta}{2}
\end{aligned}
$$

Sol: Here we have:

$$
\begin{aligned}
& z=\cos \theta+i \sin \theta \\
& \begin{aligned}
\frac{2}{1+z} & =\frac{2}{1+(\cos \theta+i \sin \theta)}=\frac{2}{(1+\cos \theta)+i \sin \theta} \times \frac{(1+\cos \theta)-i \sin \theta}{(1+\cos \theta)-i \sin \theta} \\
= & \frac{2[(1+\cos \theta)-i \sin \theta]}{(1+\cos \theta)^{2}+\sin ^{2} \theta}
\end{aligned} \\
& =\frac{2[(1+\cos \theta)-i \sin \theta]}{2(1+\cos \theta)}=1-\frac{i \sin \theta}{1+\cos \theta} \left\lvert\, \begin{array}{l}
(1+\cos \theta)^{2}+\sin ^{2} \theta \\
=1+\cos ^{2} \theta+2 \cos \theta+\sin ^{2} \theta \\
=1+\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+2 \cos \theta \\
=1+1+2 \cos \theta \\
=2+2 \cos \theta \\
\\
=
\end{array}\right. \\
& \left.=1-i \frac{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)}{2 \cos ^{2}\left(\frac{\theta}{2}\right)}=1-i \cos \theta\right) \quad \text { Proved. }
\end{aligned}
$$

Q9: Find the modulus and principal argument of the complex number

$$
\frac{1+2 i}{1-(1-i)^{2}}
$$

Sol:

$$
\frac{1+2 i}{1-(1-i)^{2}}=\frac{1+2 i}{1-(1-1-2 i)}=\frac{1+2 i}{1+2 i}=1=1+0 i
$$

$$
\left|\frac{1+2 i}{1-(1-i)^{2}}\right|=|1+0 i|=\sqrt{1^{2}}=1
$$

Principal argument of $\frac{1+2 i}{1-(1-i)^{2}}=$ Principal argument of $1+0 i$

$$
=\tan ^{-1} \frac{0}{1}=\tan ^{-1} 0=0^{\circ} .
$$

Hence modulus $=1$ and principal argument $=0^{\circ}$.

Q10: Find the smallest positive integer \mathbf{n} for which

$$
\left(\frac{1+i}{1-i}\right)^{n}=1
$$

Sol:

$$
\left[\frac{1+i}{1-i}\right]^{n}=1
$$

$$
\begin{aligned}
{\left[\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right]^{n} } & =1 \Rightarrow\left(\frac{1-1+2 i}{1+1}\right)^{n}=1 \\
(i)^{n} & =1=(i)^{4} \Rightarrow n=4
\end{aligned}
$$

Q11: Find the square root of the complex number $5+12 i$.

Sol:
Let $\sqrt{5+12 i}=x+i y$
Squaring both sides of (1), we get $5+12 i=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+i 2 x y$
Equating real and imaginary parts of (2), we get

$$
\begin{equation*}
x^{2}-y^{2}=5 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
2 x y=12 \tag{3}
\end{equation*}
$$

Now,

$$
\begin{align*}
x^{2}+y^{2} & =\sqrt{\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}}=\sqrt{(5)^{2}+(12)^{2}} \tag{4}\\
& =\sqrt{25+144}=\sqrt{169}=13
\end{align*}
$$

$$
\begin{equation*}
\Rightarrow \quad x^{2}+y^{2}=13 \tag{5}
\end{equation*}
$$

Adding (3) and (5), we get $2 x^{2}=5+13=18 \Rightarrow x=\sqrt{\frac{18}{2}}=\sqrt{9}= \pm 3$
Subtracting (3) from (5), we get $2 y^{2}=13-5=8 \Rightarrow y=\sqrt{\frac{8}{2}}=\sqrt{4}= \pm 2$
Since, $x y$ is positive, so x and y are of same sign. Hence, $x= \pm 3, y= \pm 2$

$$
\therefore \quad \sqrt{5+12 i}= \pm 3 \pm 2 i \text { i.e. }(3+2 i) \text { or }-(3+2 i)
$$

Ans.

Q12:Prove that:

$$
\cos \theta+i \sin \theta=e^{i \theta}
$$

Sol:

$$
\begin{align*}
e^{z} & =1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\ldots \tag{1}\\
\sin z & =z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\ldots \tag{2}\\
\cos z & =1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\ldots \tag{3}
\end{align*}
$$

From (2) and (3), we have

$$
\begin{aligned}
\cos z+i \sin z & =\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\ldots\right)+i\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots\right) \\
& =1+\frac{(i z)^{1}}{1!}+\frac{(i z)^{2}}{2!}+\frac{(i z)^{3}}{3!}+\ldots=e^{i z}
\end{aligned}
$$

Therefore, $\quad \cos z+i \sin z=e^{i z}$
Similarly, $\quad \cos z-i \sin z=e^{-i z}$
From (4) and (5), we have

$$
\begin{align*}
& \cos z=\frac{e^{i z}+e^{-i z}}{2} \tag{6}\\
& \sin z=\frac{e^{i z}-e^{-i z}}{2 i} \tag{7}
\end{align*}
$$

Q13: Prove De Moivre's theorem: $(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)$ where n is any positive integer.

Sol: We use the principle of mathematical induction. Assume that the result is true for the particular positive integer k, i.e., assume
$(\cos \theta+i \sin \theta)^{k}=\cos k \theta+i \sin k \theta$.
Then, multiplying both sides by $\cos \theta+\mathbf{i} \sin \theta$, we find $(\cos \theta+i \sin \theta)^{k+1}=(\cos k \theta+i \sin k \theta)(\cos \theta+i \sin \theta)=\cos (k+1) \theta+i \sin (k+1) \theta$
Thus, if the result is true for $n=k$, then it is also true for $n=k+1$. But, since the result is clearly true for $n=1$, it must also be true for $n=1+1=2$ and $n=2+1=3$, etc., and so must be true for all positive integers.
The result is equivalent to the statement $\left(e^{i \theta}\right)^{n}=e^{n i \theta}$.

Q:14

$$
\text { Express } \frac{(\cos \theta+i \sin \theta)^{8}}{(\sin \theta+i \cos \theta)^{4}} \text { in the form }(x+i y)
$$

Sol:

$$
\begin{aligned}
& \frac{(\cos \theta+i \sin \theta)^{8}}{(\sin \theta+i \cos \theta)^{4}}=\frac{(\cos \theta+i \sin \theta)^{8}}{(i)^{4}\left(\cos \theta+\frac{1}{i} \sin \theta\right)^{4}} \\
= & \frac{(\cos \theta+i \sin \theta)^{8}}{(\cos \theta-i \sin \theta)^{4}}=\frac{(\cos \theta+i \sin \theta)^{8}}{[\cos (-\theta)+i \sin (-\theta)]^{4}} \\
= & \frac{(\cos \theta+i \sin \theta)^{8}}{\left[(\cos \theta+i \sin \theta)^{-1}\right]^{4}}=\frac{(\cos \theta+i \sin \theta)^{8}}{(\cos \theta+i \sin \theta)^{4}}=(\cos \theta+i \sin \theta)^{12} \\
= & \cos 12 \theta+i \sin 12 \theta
\end{aligned}
$$

$Q: 15$ Solve $x^{4}+i=0$.

Sol: Here we have,

$$
\begin{aligned}
x^{4} & =-i=\cos \frac{\pi}{2}-i \sin \frac{\pi}{2} \\
x^{4} & =\cos \left(2 n \pi+\frac{\pi}{2}\right)-i \sin \left(2 n \pi+\frac{\pi}{2}\right) \\
x & =\left[\cos \left(2 n \pi+\frac{\pi}{2}\right)-i \sin \left(2 n \pi+\frac{\pi}{2}\right)\right]^{\frac{1}{4}} \\
& =\cos (4 n+1) \frac{\pi}{8}-i \sin (4 n+1) \frac{\pi}{8}
\end{aligned}
$$

Putting $n=0,1,2,3$ we get the roots as

$$
\begin{array}{ll}
x_{1}=\cos \frac{\pi}{8}-i \sin \frac{\pi}{8}, & x_{2}=\cos \frac{5 \pi}{8}-i \sin \frac{5 \pi}{8} \\
x_{3}=\cos \frac{9 \pi}{8}-i \sin \frac{9 \pi}{8}, & x_{4}=\cos \frac{13 \pi}{8}-i \sin \frac{13 \pi}{8}
\end{array}
$$

Q: 16 Use De Moivre's theorem to solve the equation $x^{4}-x^{3}+x^{2}-x+1=0$.
Sol: $x^{4}-x^{3}+x^{2}-x+1=0$
$(x+1)\left(x^{4}-x^{3}+x^{2}-x+1\right)=0$
$x^{5}+1=0$
$x^{5}=-1=(\cos \pi+i \sin \pi)=\cos (2 n \pi+\pi)+i \sin (2 n \pi+\pi)$
$x=[\cos (2 n+1) \pi+i \sin (2 n+1) \pi]^{1 / 5}$
$=\cos \frac{(2 n+1) \pi}{5}+i \sin \frac{(2 n+1) \pi}{5}$
When $n=0,1,2,3,4$, the values are

$$
\begin{aligned}
& \cos \frac{\pi}{5}+i \sin \frac{\pi}{5}, \cos \frac{3 \pi}{5}+i \sin \frac{3 \pi}{5}, \cos \pi+i \sin \pi, \cos \frac{7 \pi}{5}+i \sin \frac{7 \pi}{5} \\
& \cos \frac{9 \pi}{5}+i \sin \frac{9 \pi}{5}
\end{aligned}
$$

$\cos \pi+i \sin \pi=-1$, which is rejected as it is corresponding to $x+1=0$.
Hence, the required roots are

$$
\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}, \cos \frac{3 \pi}{5}+i \sin \frac{3 \pi}{5}, \cos \frac{7 \pi}{5}+i \sin \frac{7 \pi}{5}, \cos \frac{9 \pi}{5}+i \sin \frac{9 \pi}{5} .
$$

Q17: Prove that

$(\cosh x-\sinh x)^{n}=\cosh n x-\sinh n x$.
Sol:
L.H.S. $=(\cosh x-\sinh x)^{n}$

$$
\begin{equation*}
=\left[\frac{e^{x}+e^{-x}}{2}-\frac{e^{x}-e^{-x}}{2}\right]^{n}=\left[\frac{2 e^{-x}}{2}\right]^{n}=\left(e^{-x}\right)^{n}=e^{-n x} \tag{1}
\end{equation*}
$$

R.H.S. $=\cosh n x-\sinh n x$

$$
\begin{equation*}
=\left(\frac{e^{n x}+e^{-n x}}{2}-\frac{e^{n x}+e^{-n x}}{2}\right) \quad=\frac{2 e^{-n x}}{2}=e^{-n x} \tag{2}
\end{equation*}
$$

From (1) and (2), we have
LHS = RHS

Q18: Prove that the general value of Θ which satisfies the equation:

$(\cos \theta+i \sin \theta) \cdot(\cos 2 \theta+i \sin 2 \theta) \ldots(\cos n \theta+i \sin n \theta)=1$ is $\frac{4 m \pi}{n(n+1)}$, where m is any integer:

Sol:

$(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots(\cos n \theta+i \sin n \theta)=1$

$$
(\cos \theta+i \sin \theta)(\cos \theta+i \sin \theta)^{2} \ldots(\cos \theta+i \sin \theta)^{n}=1
$$

$(\cos \theta+i \sin \theta)^{1+2 \ldots+n}=1$

$$
\begin{gathered}
(\cos \theta+i \sin \theta)^{\frac{n(n+1)}{2}}=(\cos 2 m \pi+i \sin 2 m \pi) \\
\cos \frac{n(n+1)}{2} \theta+i \sin \frac{n(n+1)}{2} \theta=\cos 2 m \pi+i \sin 2 m \pi \\
\frac{n(n+1)}{2} \theta=2 m \pi \Rightarrow \theta=\frac{4 m \pi}{n(n+1)}
\end{gathered}
$$

Q19: Separate the following into real and imaginary parts:
(i) $\sin (x+i y)$
(ii) $\cos (x+i y)$
(iii) $\tan (x+i y)$

Solution. (i) $\sin (x+i y)=\sin x \cos i y+\cos x \sin (i y)=\sin x \cosh y+i \cos x \sinh y$.
(ii) $\cos (x+i y)=\cos x \cos (i y)-\sin x \sin (i y)=\cos x \cosh y-i \sin x \sinh y$.
(iii) $\tan (x+i y)=\frac{\sin (x+i y)}{\cos (x+i y)}=\frac{2 \sin (x+i y) \cos (x-i y)}{2 \cos (x+i y) \cos (x-i y)}$

$$
=\frac{\sin 2 x+\sin (2 i y)}{\cos 2 x+\cos 2 i y}=\frac{\sin 2 x+i \sinh 2 y}{\cos 2 x+\cosh 2 y}
$$

$$
\left\{\begin{array}{l}
\because \quad 2 \sin A \cdot \cos B=\sin (A+B)+\sin (A-B) \\
\text { and } 2 \cos A \cdot \cos B=\cos (A+B)+\cos (A-B)
\end{array}\right\}
$$

Q20:If $\tan (A+i B)=x+i y$, prove that

$\tan 2 A=\frac{2 x}{1-x^{2}-y^{2}}$ and $\tanh 2 B=\frac{2 x}{1+x^{2}+y^{2}}$

Sol:

$$
\begin{aligned}
\tan (A & +i B)=x+i y ; \tan (A-i B)=x-i y \\
\tan 2 A & =\tan (A+i B+A-i B) \\
& =\frac{\tan (A+i B)+\tan (A-i B)}{1-\tan (A+i B) \tan (A-i B)}
\end{aligned}
$$

$\tan 2 A=\frac{(x+i y)+(x-i y)}{1-(x+i y)(x-i y)}=\frac{2 x}{1-\left(x^{2}+y^{2}\right)}=\frac{2 x}{1-x^{2}-y^{2}}$
$\tan 2 i B=\tan (A+i B-A+i B)=\frac{\tan (A+i B)-\tan (A-i B)}{1+\tan (A+i B) \tan (A-i B)}$
$\tan 2 i B=\frac{(x+i y)-(x-i y)}{1+(x+i y)(x-i y)}=\frac{(2 y) i}{1+x^{2}+y^{2}}$
$\tanh 2 B=\frac{2 y}{1+x^{2}+y^{2}}$ $\tan i x=i \tanh x$

Q21: If $\sin (\alpha+i \beta)=x+i y$, prove that

(a) $\frac{x^{2}}{\cosh ^{2} \beta}+\frac{y^{2}}{\sinh ^{2} \beta}=1$
(b) $\frac{x^{2}}{\sin ^{2} \alpha}-\frac{y^{2}}{\cos ^{2} \alpha}=1$

Sol:

(a) $x+i y=\sin (\alpha+i \beta)=\sin \alpha \cosh \beta+i \cos \alpha \sinh \beta$

Equating real and imaginary parts, we get

$$
x=\sin \alpha \cosh \beta, y=\cos \alpha \sinh \beta
$$

$$
\sin \alpha=\frac{x}{\cosh \beta} \text { and } \cos \alpha=\frac{y}{\sinh \beta}
$$

Squaring and adding, $\sin ^{2} \alpha+\cos ^{2} \alpha=\frac{x^{2}}{\cosh ^{2} \beta}+\frac{y^{2}}{\sinh ^{2} \beta}$
$\Rightarrow \quad 1=\frac{x^{2}}{\cosh ^{2} \beta}+\frac{y^{2}}{\sinh ^{2} \beta}$
(b) Again

$$
\cosh \beta=\frac{x}{\sin \alpha} \text { and } \sinh \beta=\frac{y}{\cos \alpha}
$$

$$
\cosh ^{2} \beta-\sinh ^{2} \beta=\frac{x^{2}}{\sin ^{2} \alpha}-\frac{y^{2}}{\cos ^{2} \alpha}
$$

$$
1=\frac{x^{2}}{\sin ^{2} \alpha}-\frac{y^{2}}{\cos ^{2} \alpha}
$$

Q22: Separate $\log (x+i y)$ into its real and imaginary parts.

Sol: let

$$
\begin{align*}
& x=r \cos \theta \tag{1}\\
& y=r \sin \theta \tag{2}
\end{align*}
$$

Squaring and adding (1) and (2) we have $x^{2}+y^{2}=r^{2}$

$$
\therefore \quad r=\sqrt{x^{2}+y^{2}}
$$

Wel have,

$$
\tan \theta=\frac{y}{x} \Rightarrow \theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

[Dividing (2) by (1)]

$$
\begin{aligned}
& \begin{aligned}
\log (x+i y) & =\log [r(\cos \theta+i \sin \theta)] \\
& =[\log r+\log (\cos \theta+i \sin \theta)] \\
\log (x+i y) & =\log r+\log [\cos (2 n \pi+\theta)+i \sin (2 n \pi+\theta)] \\
& =\log r+\log e^{i(2 n \pi+\theta)}=\log r+i(2 n \pi+\theta)
\end{aligned} \\
& \log (x+i y)=\log \sqrt{x^{2}+y^{2}}+i\left(2 n \pi+\tan ^{-1} \frac{y}{x}\right) \\
& \log (x+i y)=\log \sqrt{x^{2}+y^{2}}+i \tan ^{-1} \frac{y}{x}
\end{aligned}
$$

Q23:

Show that $\log \frac{x+i y}{x-i y}=2 i \tan ^{-1} \frac{y}{x}$.

Sol:

Let $\log (x+i y)=\log (r \cos \theta+i r \sin \theta)=\log r e^{i \theta}$

$$
\begin{aligned}
& =\log r+i \theta \\
\log (x-i y) & =\log r-i \theta \\
\log \frac{x+i y}{x-i y} & =\log (x+i y)-\log (x-i y)=(\log r+i \theta)-(\log r-i \theta)=2 i \theta \\
& =2 i \tan ^{-1} \frac{y}{x} .
\end{aligned} \quad\left[\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right]
$$

Q24:

Consider the function

$$
f(z)=4 x+y+i(-x+4 y)
$$

and discuss $\frac{d f}{d z}$

Sol:

Here, $\quad f(z)=4 x+y+i(-x+4 y)=u+i v$

$$
\begin{equation*}
\Rightarrow \quad \frac{\delta f}{\delta z}=\frac{4 \delta x+\delta y-i \delta x+4 i \delta y}{\delta x+i \delta y} \tag{1}
\end{equation*}
$$

(a) Along real axis: If Q is taken on the horizontal line through $P(x, y)$ and Q then approaches P along this line, we shall have $\delta y=0$ and $\delta z=\delta x$.

$$
\frac{\delta f}{\delta z}=\frac{4 \delta x-i \delta x}{\delta x}=4-i
$$

(b) Along imaginary axis: If Q is taken on the vertical line through P and then Q approaches P along this line, we have

$$
z=x+i y=0+i y, \delta z=i \delta y, \delta x=0 .
$$

Putting these values in (1), we have

$$
\frac{\delta f}{\delta z}=\frac{\delta y+4 i \delta y}{i \delta y}=\frac{1}{i}(1+4 i)=4-i
$$

$$
\begin{aligned}
& u=4 x+y \text { and } \quad v=-x+4 y \\
& f(z+\delta z)=4(x+\delta x)+(y+\delta y)-i(x+\delta x)+4 i(y+\delta y) \\
& f(z+\delta z)-f(z)=4(x+\delta x)+(y+\delta y)-i(x+\delta x)+4 i(y+\delta y)-4 x-y+i x-4 i y \\
& =4 \delta x+\delta y-i \delta x+4 i \delta y \\
& \frac{f(z+\delta z)-f(z)}{\delta z}=\frac{4 \delta x+\delta y-i \delta x+4 i \delta y}{\delta x+i \delta y}
\end{aligned}
$$

(c) Along a line $y=x$: If Q is taken on a line $y=x$.

$$
\begin{aligned}
z & =x+i y=x+i x=(1+i) x \\
\delta z & =(1+i) \delta x \text { and } \delta y=\delta x
\end{aligned}
$$

On putting these values in (1), we have

$$
\frac{\delta f}{\delta z}=\frac{4 \delta x+\delta x-i \delta x+4 i \delta x}{\delta x+i \delta x}=\frac{4+1-i+4 i}{1+i}=\frac{5+3 i}{1+i}=\frac{(5+3 i)(1-i)}{(1+i)(1-i)}=4-i
$$

In all the three different paths approaching Q from P, we get the same values of $\frac{\delta f}{\delta z}=4-i$. In such a case, the function is said to be differentiable at the point z in the given region.

Q25:

Determine whether $\frac{1}{z}$ is analytic or not?

Sol:

Let $w=f(z)=u+i v=\frac{1}{z} \Rightarrow u+i v=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}$
Equating real and imaginary parts, we get

$$
\begin{aligned}
u & =\frac{x}{x^{2}+y^{2}}, \quad v=\frac{-y}{x^{2}+y^{2}} & & \\
\frac{\partial u}{\partial x} & =\frac{\left(x^{2}+y^{2}\right) \cdot 1-x \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, & & \frac{\partial u}{\partial y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} . \\
\frac{\partial v}{\partial x} & =\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, & & \frac{\partial v}{\partial y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Thus,

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

Thus $C-R$ equations are satisfied. Also partial derivatives are continuous except at $(0,0)$. Therefore $\frac{1}{z}$ is analytic everywhere except at $z=0$.

Also

$$
\frac{d w}{d z}_{d w}=-\frac{1}{z^{2}}
$$

This again shows that $\frac{d w}{d z}$ exists everywhere except at $z=0$. Hence $\frac{1}{z}$ is analytic everywhere except at $z=0$.

Ans.

Q26:

Show that the function $e^{x}(\cos y+i \sin y)$ is an analytic function, find its derivative.

Solution. Let $e^{x}(\cos y+i \sin y)=u+i v$
So, $e^{x} \cos y=u \quad$ and $e^{x} \sin y=v \quad$ then $\quad \frac{\partial u}{\partial x}=e^{x} \cos y, \quad \frac{\partial v}{\partial y}=e^{x} \cos y$

$$
\frac{\partial u}{\partial y}=-e^{x} \sin y, \quad \frac{\partial v}{\partial x}=e^{x} \sin y
$$

Here we see that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

These are $C-R$ equations and are satisfied and the partial derivatives are continuous. Hence, $e^{x}(\cos y+i \sin y)$ is analytic.

$$
\begin{aligned}
& f(z)=u+i v=e^{x}(\cos y+y \sin y) \text { and } \frac{\partial u}{\partial x}=e^{x} \cos y, \quad \frac{\partial v}{\partial x}=e^{x} \sin y \\
& f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=e^{x} \cos y+i e^{x} \sin y=e^{x}(\cos y+i \sin y)=e^{x} \cdot e^{i y}=e^{x+i y}=e^{z} .
\end{aligned}
$$

Which is the required derivative.
Q27: Show that the real and imaginary parts of the function $w=\log z$ satisfy the Cauchy-Riemann equations when z is not zero. Find its derivative.
Solution. To separate the real and imaginary parts of $\log z$, we put $x=r \cos \theta ; y=r \sin \theta$ $w=\log z=\log (x+i y)$
$\Rightarrow \quad u+i v=\log (r \cos \theta+i r \sin \theta)=\log r(\cos \theta+i \sin \theta)=\log _{e} r \cdot e^{i \theta}$

$$
=\log _{e} r+\log _{e} e^{i \theta}=\log r+i \theta=\log \sqrt{x^{2}+y^{2}}+i \tan ^{-1} \frac{y}{x} \quad\left[\begin{array}{c}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\tan ^{-1} \frac{y}{x}
\end{array}\right]
$$

So

$$
u=\log \sqrt{x^{2}+y^{2}}=\frac{1}{2} \log \left(x^{2}+y^{2}\right), v=\tan ^{-1} \frac{y}{x}
$$

On differentiating u, v, we get

$$
\begin{align*}
& \frac{\partial u}{\partial x}=\frac{1}{2} \frac{1}{x^{2}+y^{2}} \cdot(2 x)=\frac{x}{x^{2}+y^{2}} \tag{1}\\
& \frac{\partial v}{\partial y}=\frac{1}{1+\frac{y^{2}}{x^{2}}}\left(\frac{1}{x}\right)=\frac{x}{x^{2}+y^{2}} \tag{2}
\end{align*}
$$

From (1) and (2), $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$
Again differentiating u, v, we have

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{1}{2} \frac{1}{x^{2}+y^{2}}(2 y)=\frac{y}{x^{2}+y^{2}} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \partial y \quad 2 x^{2}+y^{2} \quad x^{2}+y^{2} \\
& \frac{\partial v}{\partial x}=\frac{1}{1+\frac{y^{2}}{x^{2}}}\left(-\frac{y}{x^{2}}\right)=-\frac{y}{x^{2}+y^{2}} \tag{4}
\end{align*}
$$

From (3) and (4), we have

$$
\begin{equation*}
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{B}
\end{equation*}
$$

Equations (A) and (B) are $C-R$ equations and partial derivatives are continuous. Hence, $w=\log z$ is an analytic function except
when

$$
\begin{aligned}
x^{2}+y^{2}= & 0 \Rightarrow x=y=0 \Rightarrow x+i y=0 \Rightarrow z=0 \\
w=u & +i v \\
\frac{d w}{d z} & =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}=\frac{x-i y}{x^{2}+y^{2}} \\
& =\frac{x-i y}{(x+i y)(x-i y)}=\frac{1}{x+i y}=\frac{1}{z}
\end{aligned}
$$

Which is the required derivative.

Q28: Discuss the analyticity of the function

$$
f(z)=z \bar{z} .
$$

Sol:

$f(z)=z \bar{z}=(x+i y)(x-i y)=x^{2}-i^{2} y^{2}=x^{2}+y^{2}$
$f(z)=x^{2}+y^{2}=u+i v$.
$u=x^{2}+y^{2}, v=0$
At origin, $\frac{\partial u}{\partial x}=\lim _{h \rightarrow 0} \frac{u(0+h, 0)-u(0,0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2}}{h}=0$

$$
\frac{\partial u}{\partial y}=\lim _{k \rightarrow 0} \frac{u(0,0+k)-u(0,0)}{k}=\lim _{k \rightarrow 0} \frac{k^{2}}{k}=0
$$

Also,

$$
\frac{\partial v}{\partial x}=\lim _{h \rightarrow 0} \frac{v(0+h, 0)-v(0,0)}{h}=0
$$

$$
\frac{\partial v}{\partial y}=\lim _{k \rightarrow 0} \frac{v(0,0+k)-v(0,0)}{k}=0
$$

Thus,

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

Hence, $\mathrm{C}-\mathrm{R}$ equations are satisfied at the origin.

$$
f^{\prime}(0)=\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z}=\lim _{z \rightarrow 0} \frac{\left(x^{2}+y^{2}\right)-0}{x+i y}
$$

Let $z \rightarrow 0$ along the line $y=m x$, then

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{\left(x^{2}+m^{2} x^{2}\right)}{(x+i m x)}=\lim _{x \rightarrow 0} \frac{\left(1+m^{2}\right) x}{1+i m}=0
$$

Therefore, $f^{\prime}(0)$ is unique. Hence the function $f(z)$ is analytic at $z=0$.

Q29: Examine the nature of the function:

$$
\begin{aligned}
& f(z)=\frac{x^{2} y^{5}(x+i y)}{x^{4}+y^{10}} ; z \neq 0 \\
& f(0)=0
\end{aligned}
$$

in the region including the origin.

Sol: here

$$
f(z)=u+i v=\frac{x^{2} y^{5}(x+i y)}{x^{4}+y^{10}} ; z \neq 0
$$

Equating real and imaginary parts, we get

$$
\begin{gathered}
u=\frac{x^{3} y^{5}}{x^{4}+y^{10}}, \quad v=\frac{x^{2} y^{6}}{x^{4}+y^{10}} \\
\frac{\partial u}{\partial x}=\lim _{h \rightarrow 0} \frac{u(0+h, 0)-u(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{0}{h^{4}}}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0 \\
\frac{\partial u}{\partial y}=\lim _{k \rightarrow 0} \frac{u(0,0+k)-u(0,0)}{k}=\lim _{k \rightarrow 0} \frac{\frac{0}{k^{10}}}{k}=\lim _{k \rightarrow 0} \frac{0}{k}=0 \\
\frac{\partial v}{\partial x}=\lim _{h \rightarrow 0} \frac{v(0+h, 0)-v(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{0}{h^{4}}}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0 \\
\frac{\partial v}{\partial y}=\lim _{k \rightarrow 0} \frac{v(0,0+k)-v(0,0)}{k}=\lim _{k \rightarrow 0} \frac{\frac{0}{k^{10}}}{k}=\lim _{k \rightarrow 0} \frac{0}{k}=0
\end{gathered}
$$

From the above results, it is clear that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Hence, C-R equations are satisfied at the origin.
But

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{z \rightarrow 0} \frac{f(0+z)-f(0)}{z}=\lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}}\left[\frac{x^{2} y^{5}(x+i y)}{x^{4}+y^{10}}-0\right] \cdot \frac{1}{x+i y}(\text { Increment }=z) \\
& =\lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}} \frac{x^{2} y^{5}}{x^{4}+y^{10}}
\end{aligned}
$$

Let $z \rightarrow 0$ along the radius vector $y=m x$, then

$$
\begin{equation*}
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{m^{5} x^{7}}{x^{4}+m^{10} x^{10}}=\lim _{x \rightarrow 0} \frac{m^{5} x^{3}}{1+m^{10} x^{6}}=\frac{0}{1}=0 \tag{1}
\end{equation*}
$$

Again let $z \rightarrow 0$ along the curve $y^{5}=x^{2}$

$$
\begin{equation*}
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}+x^{4}}=\frac{1}{2} \tag{2}
\end{equation*}
$$

(1) and (2) shows that $f^{\prime}(0)$ does not exist. Hence, $f(z)$ is not analytic at origin although Cauchy-Riemann equations are satisfied there.

Ans.

Q30: Derive C-R equations in polar form

$$
\begin{aligned}
& \frac{\partial \mathrm{u}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{v}}{\partial \theta} \\
& \frac{\partial \mathrm{u}}{\partial \theta}=-\mathrm{r} \frac{\partial \mathrm{v}}{\partial \mathrm{r}}
\end{aligned}
$$

Sol:

We know that $x=r \cos \theta$, and u is a function of x and y.

$$
\begin{align*}
z & =x+i y=r(\cos \theta+i \sin \theta)=r e^{i \theta} \\
u+i v & =f(z)=f\left(r e^{i \theta}\right) \tag{1}
\end{align*}
$$

Differentiating (1) partially w.r.t., " r ", we get

$$
\begin{equation*}
\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}=f^{\prime}\left(r e^{i \theta}\right) \cdot e^{i \theta} \tag{2}
\end{equation*}
$$

Differentiating (1) w.r.t. " θ ", we get

$$
\begin{equation*}
\frac{\partial u}{\partial \theta}+i \frac{\partial v}{\partial \theta}=f^{\prime}\left(r e^{i \theta}\right) r e^{i \theta} i \tag{3}
\end{equation*}
$$

Substituting the value of $f^{\prime}\left(r e^{i \theta}\right) e^{i \theta}$ from (2) in (3), we obtain

$$
\frac{\partial u}{\partial \theta}+i \frac{\partial v}{\partial \theta}=r\left(\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right) i \quad \text { or } \quad \frac{\partial u}{\partial \theta}+i \frac{\partial v}{\partial \theta}=i r \frac{\partial u}{\partial r}-r \frac{\partial v}{\partial r}
$$

Equating real and imaginary parts, we get

$$
\begin{aligned}
& \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r} \\
& \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}
\end{aligned} \Rightarrow \frac{\partial v}{\partial r}=\frac{-1}{r} \frac{\partial u}{\partial \theta}
$$

Q31:prove that if $f(z)=u+i v$ is an analytic function, then u and v are both harmonic functions.

Sol:

Let $f(z)=u+i v$, be an analytic function, then we have

$$
\begin{align*}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \tag{1}\\
& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{2}
\end{align*}
$$

Differentiating (1) with respect to x, we get $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}$
Differentiating (2) w.r.t. ' y ' we have $\frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial y \partial x}$
Adding (3) and (4) we have $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} v}{\partial x \partial y}-\frac{\partial^{2} v}{\partial y \partial x}$

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \\
& \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0
\end{aligned}
$$

$$
\left(\frac{\partial^{2} v}{\partial x \partial y}=\frac{\partial^{2} v}{\partial y \partial x}\right)
$$

Similarly
Therefore both u and v are harmonic functions.
Such functions u, v are called Conjugate harmonic functions if $u+i v$ is also analytic function.

Q32:

Prove that $u=x^{2}-y^{2}$ and $v=\frac{y}{x^{2}+y^{2}}$ are harmonic functions of (x, y), but are not harmonic conjugates.
Solution. We have, $\quad u=x^{2}-y^{2}$

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =2 x, \quad \frac{\partial^{2} u}{\partial x^{2}}=2, \quad \frac{\partial u}{\partial y}=-2 y, \quad \frac{\partial^{2} u}{\partial y^{2}}=-2 \\
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =2-2=0
\end{aligned}
$$

$u(x, y)$ satisfies Laplace equation, hence $u(x, y)$ is harmonic

$$
\begin{align*}
& v=\frac{y}{x^{2}+y^{2}}, \quad \frac{\partial v}{\partial x}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial^{2} v}{\partial x^{2}}=\frac{\left(x^{2}+y^{2}\right)^{2}(-2 y)-(-2 x y) 2\left(x^{2}+y^{2}\right) 2 x}{\left(x^{2}+y^{2}\right)^{4}} \\
&=\frac{\left(x^{2}+y^{2}\right)(-2 y)-(-2 x y) 4 x}{\left(x^{2}+y^{2}\right)^{3}}=\frac{6 x^{2} y-2 y^{3}}{\left(x^{2}+y^{2}\right)^{3}} \\
& \frac{\partial v}{\partial y}=\frac{\left(x^{2}+y^{2}\right) \cdot 1-y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \tag{1}\\
& \frac{\partial^{2} v}{\partial y^{2}}=\frac{\left(x^{2}+y^{2}\right)^{2}(-2 y)-\left(x^{2}-y^{2}\right) 2\left(x^{2}+y^{2}\right)(2 y)}{\left(x^{2}+y^{2}\right)^{4}}=\frac{\left(x^{2}+y^{2}\right)(-2 y)-\left(x^{2}-y^{2}\right)(4 y)}{\left(x^{2}+y^{2}\right)^{3}} \\
&=\frac{-2 x^{2} y-2 y^{3}-4 x^{2} y+4 y^{3}}{\left(x^{2}+y^{2}\right)^{3} \partial^{2} v \quad}=\frac{-6 x^{2} y+2 y^{3}}{\left.\partial^{2} v^{2}+y^{2}\right)^{3}} \tag{2}
\end{align*}
$$

On adding (1) and (2), we get $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0$
$v(x, y)$ also satisfies Laplace equations, hence $v(x, y)$ is also harmonic function.
But $\quad \frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} \quad$ and $\quad \frac{\partial u}{\partial y} \neq-\frac{\partial v}{\partial x}$
Therefore u and v are not harmonic conjugates.
Proved.

Q33:

Prove that $u=x^{2}-y^{2}-2 x y-2 x+3 y$ is harmonic. Find a function v such that $f(z)=u+i v$ is analytic. Also express $f(z)$ in terms of z.

Sol: we have,

$$
\begin{aligned}
& u= x^{2}-y^{2}-2 x y-2 x+3 y \\
& \frac{\partial u}{\partial x}=2 x-2 y-2 \quad \Rightarrow \frac{\partial^{2} u}{\partial x^{2}}=2 \\
& \frac{\partial u}{\partial y}=-2 y-2 x+3 \quad \Rightarrow \quad \frac{\partial^{2} u}{\partial y^{2}}=-2 \\
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=2-2=0
\end{aligned}
$$

Since Laplace equation is satisfied, therefore u is harmonic.

We know that,

$$
\begin{aligned}
& d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y \\
& d v=-\frac{\partial u}{\partial y} d x+\frac{\partial u}{\partial x} d y
\end{aligned}
$$

$$
\ldots \text { (1) }\left[\because \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \text { and } \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}\right]
$$

Putting the values of $\frac{\partial u}{\partial y}$ and $\frac{\partial u}{\partial x}$ in (1), we get

$$
\begin{array}{lrl}
& & d v \\
\Rightarrow & v & =-(-2 y-2 x+3) d x+(2 x-2 y-2) d y \\
& =\int(2 y+2 x-3) d x+\int(-2 y-2) d y+C \\
\text { Hence, } & v & =2 x y+x^{2}-3 x-y^{2}-2 y+C
\end{array}
$$

(Ignoring 2x)
Ans.
Now, $\quad f(z)=u+i v$

$$
\begin{aligned}
& =\left(x^{2}-y^{2}-2 x y-2 x+3 y\right)+i\left(2 x y+x^{2}-3 x-y^{2}-2 y\right)+i C \\
& =\left(x^{2}-y^{2}+2 i x y\right)+\left(i x^{2}-i y^{2}-2 x y\right)-(2+3 i) x-i(2+3 i) y+i C \\
& =\left(x^{2}-y^{2}+2 i x y\right)+i\left(x^{2}-y^{2}+2 i x y\right)-(2+3 i) x-i(2+3 i) y+i C \\
& =(x+i y)^{2}+i(x+i y)^{2}-(2+3 i)(x+i y)+i C \\
& =z^{2}+i z^{2}-(2+3 i) z+i C \\
& =(1+i) z^{2}-(2+3 i) z+i C
\end{aligned}
$$

Which is the required expression of $f(z)$ in terms of z.

Q34:

If $w=\phi+i \psi$ represents the complex potential for an electric field and

$$
\psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}
$$

determine the function ϕ.

Sol:

Solution. $\quad w=\phi+i \psi$ and $\psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$

$$
\begin{aligned}
& \frac{\partial \psi}{\partial x}=2 x+\frac{\left(x^{2}+y^{2}\right) \cdot 1-x \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}=2 x+\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial \psi}{\partial y}=-2 y-\frac{x(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=-2 y-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

We know that, $d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y=\frac{\partial \psi}{\partial y} d x-\frac{\partial \psi}{\partial x} d y$

$$
\begin{aligned}
& =\left(-2 y-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}\right) d x-\left(2 x+\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right) d y \\
\phi & =\int\left[-2 y-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}\right] d x+c
\end{aligned}
$$

This is an exact differential equation.

$$
\phi=-2 x y+\frac{y}{x^{2}+y^{2}}+C
$$

Which is the required function.

Q35:

If $f(z)=u+i v$ is an analytic function of $z=x+i y$ and $u-v=e^{-x}[(x-y) \sin y-(x+y) \cos y]$

Find $f(z)$.

Sol: we know that

$$
\begin{aligned}
f(z) & =u+i v \\
i f(z) & =i u-v \\
F(z) & =U+i V \\
U & =u-v=e^{-x}[(x-y) \sin y-(x+y) \cos y] \\
\frac{\partial U}{\partial x} & =-e^{-x}[(x-y) \sin y-(x+y) \cos y]+e^{-x}[\sin y-\cos y] \\
\frac{\partial U}{\partial y} & =e^{-x}[(x-y) \cos y-\sin y-(x+y)(-\sin y)-\cos y]
\end{aligned}
$$

We know that,

$$
\begin{aligned}
& d V=\frac{\partial V}{\partial x} d x+\frac{\partial V}{\partial y} d y=-\frac{\partial U}{\partial y} d x+\frac{\partial U}{\partial x} d y \quad \text { [C-R equations] } \\
&=-e^{-x}[(x-y) \cos y-\sin y+(x+y) \sin y-\cos y] d x \\
& \quad-e^{-x}[(x-y) \sin y-(x+y) \cos y-\sin y+\cos y] d y \\
&=-e^{-x} x\left\{(\cos y+\sin y) d x-e^{-x}(-y \cos y-\sin y+y \sin y-\cos y) d x\right. \\
& \quad-e^{-x}[(x-y) \sin y-(x+y) \cos y-\sin y+\cos y] d y \\
& V=(\cos y+\sin y)\left(x e^{-x}+e^{-x}\right)+e^{-x}(-y \cos y-\sin y+y \sin y-\cos y)+C \\
& F(z)=U+i V \\
& F(z)=e^{-x}[(x-y) \sin y-(x+y) \cos y]+i e^{-x}[x \cos y+\cos y+x \sin y+\sin y \\
&\quad-y \cos y-\sin y+y \sin y-\cos y]+i C \\
&=e^{-x}[\{x \sin y-y \sin y-x \cos y-y \cos y\}+i\{x \cos y+x \sin y-y \cos y+y \sin y\}]+i C \\
&=e^{-x}[(x+i y) \sin y-(x+i y) \cos y+(-y+i x) \sin y+(-y+i x) \cos y]+i C \\
&=e^{-x}[(x+i y) \sin y-(x+i y) \cos y+i(x+i y) \sin y+i(x+i y) \cos y]+i C \\
&=e^{-x}(x+i y)[\sin y-\cos y+i \sin y+i \cos y]+i C \\
&=e^{-x}(x+i y)[(1+i) \sin y+i(1+i) \cos y]+i C \\
&(1+i) f(z)=e^{-x}(x+i y)(1+i)(\sin y+i \cos y)+i C \\
& f(z)=e^{-x}(x+i y)(\sin y+i \cos y)+\frac{i C}{1+i} \\
&=i z e^{-x}(\cos y-i \sin y)+\frac{i C}{1+i} \\
&=i z e^{-x} e^{-i y}=i z e e^{-(x+i y)}=i z e^{-z}+\frac{i C}{1+i}
\end{aligned}
$$

Let $\quad \phi_{1}(x, y)=-e^{-x}[(x-y) \sin y-(x+y) \cos y]+e^{-x}[\sin y-\cos y]$

$$
\phi_{1}(z, 0)=-e^{-z}[z \sin 0-z \cos 0]+e^{-z}[\sin 0+\cos 0]
$$

$$
=-e^{-z}[z-1]
$$

Let $\quad \phi_{2}(x, y)=e^{-x}[(x-y) \cos y-\sin y+(x+y) \sin y-\cos y]$
$\phi_{2}(z, 0)=e^{-z}[(z) \cos 0-\sin 0+z \sin 0-\cos 0]$

$$
=e^{-z}[z-1]
$$

$F(z)=U+i V$
$F^{\prime}(z)=\frac{\partial U}{\partial x}+i \frac{\partial V}{\partial x}=\frac{\partial U}{\partial x}-i \frac{\partial U}{\partial y}=f_{1}(z, 0)-i f_{2}(z, 0)$

$$
=e^{-z}(z-1)-i e^{-z}(z-1)=(1-i) e^{-z}(z-1)=(1-i) e^{-z}(z-1)
$$

$F(z)=(1-i)\left[z \frac{e^{-z}}{-1}-\int \frac{e^{-z}}{-1} d z\right]+C=(1-i)\left[-z e^{-z}-e^{-z}\right]+C$

$$
(1+i) f(z)=(-1+i)(z+1) e^{-z}+C
$$

$$
f(z)=\frac{(-1+i)}{1+i}(z+1) e^{-z}+C=\frac{(-1+i)(1-i)}{(1+i)(1-i)}(z+1) e^{-z}+C
$$

$$
=i(z+1) e^{-z}+C
$$

Q36:

Find analytic function $f(z)=u(r, \theta)+i v(r, \theta)$ such that

$$
v(r, \theta)=r^{2} \cos 2 \theta-r \cos \theta+2 .
$$

Sol: we have

$$
\begin{equation*}
v=r^{2} \cos 2 \theta-r \cos \theta+2 \tag{1}
\end{equation*}
$$

Differentiating (1), we get

$$
\begin{align*}
& \frac{\partial v}{\partial \theta}=-2 r^{2} \sin 2 \theta+r \sin \theta \tag{2}\\
& \frac{\partial v}{\partial r}=2 r \cos 2 \theta-\cos \theta \tag{3}
\end{align*}
$$

Using $C-R$ equations in polar coordinates, we get

$$
\begin{array}{ll}
& r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta}=-2 r^{2} \sin 2 \theta+r \sin \theta \\
\Rightarrow \quad & \frac{\partial u}{\partial r}=-2 r \sin 2 \theta+\sin \theta \\
\Rightarrow \quad-\frac{1}{r} \frac{\partial u}{\partial \theta}=\frac{\partial v}{\partial r}=2 r \cos 2 \theta-\cos \theta \\
\Rightarrow & \frac{\partial u}{\partial \theta}=-2 r^{2} \cos 2 \theta+r \cos \theta \tag{5}
\end{array}
$$

[From (3)]

By total differentiation formula

$$
\begin{aligned}
d u & =\frac{\partial u}{\partial r} d r+\frac{\partial u}{\partial \theta} d \theta=(-2 r \sin 2 \theta+\sin \theta) d r+\left(-2 r^{2} \cos 2 \theta+r \cos \theta\right) d \theta \\
& =-\left[(2 r d r) \sin 2 \theta+r^{2}(2 \cos 2 \theta d \theta)\right]+[\sin \theta \cdot d r+r(\cos \theta d \theta)] \\
& =-[(2 r d r) \sin 2 \theta-\sin \theta d r]+\left[-r^{2} 2 \cos 2 \theta d \theta+r \cos \theta d \theta\right] \\
& =-d\left(r^{2} \sin 2 \theta\right)+d(r \sin \theta) \quad \text { (Exact differential equation) }
\end{aligned}
$$

Integrating, we get

$$
u=-r^{2} \sin 2 \theta+r \sin \theta+c
$$

Hence,

$$
\begin{aligned}
f(z) & =u+i v \\
& =\left(-r^{2} \sin 2 \theta+r \sin \theta+c\right)+i\left(r^{2} \cos 2 \theta-r \cos \theta+2\right) \\
& =i r^{2}(\cos 2 \theta+i \sin 2 \theta)-i r(\cos \theta+i \sin \theta)+2 i+c \\
& =i r^{2} e^{2 i \theta}-i r e^{i \theta}+2 i+c=i\left(r^{2} e^{2 i \theta}-r e^{i \theta}\right)+2 i+c .
\end{aligned}
$$

This is the required analytic function.
Q37:
If $u=x^{2}-y^{2}$, find a corresponding analytic function.

Solution.

$$
\frac{\partial u}{\partial x}=2 x=\phi_{1}(x, y), \quad \frac{\partial u}{\partial y}=-2 y=\phi_{2}(x, y)
$$

On replacing x by z and y by 0 , we have

$$
\begin{aligned}
f(z) & =\int\left[\phi_{1}(z, 0)-i \phi_{2}(z, 0)\right] d z+C \\
& =\int[2 z-i(0)] d z+c=\int 2 z d z+c=z^{2}+C
\end{aligned}
$$

This is the required analytic function.

Q38:

Show that $e^{x}(x \cos y-y \sin y)$ is a harmonic function. Find the analytic function for which $e^{x}(x \cos y-y \sin y)$ is imaginary part.
Solution. Here $\quad v=e^{x}(x \cos y-y \sin y)$
Differentiating partially w.r.t. x and y, we have

$$
\begin{align*}
\frac{\partial v}{\partial x} & =e^{x}(x \cos y-y \sin y)+e^{x} \cos y=\psi_{2}(x, y), \tag{say}\\
\frac{\partial v}{\partial y} & =e^{x}(-x \sin y-y \cos y-\sin y)=\psi_{1}(x, y) \tag{say}\\
\frac{\partial^{2} v}{\partial x^{2}} & =e^{x}(x \cos y-y \sin y)+e^{x} \cos y+e^{x} \cos y \tag{2}\\
& =e^{x}(x \cos y-y \sin y+2 \cos y)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial y^{2}}=e^{x}(-x \cos y+y \sin y-2 \cos y) \tag{3}
\end{equation*}
$$

) and (4), we have

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0 \quad \Rightarrow v \text { is a harmonic function. }
$$

Now putting $x=z, y=0$ in (1) and (2), we get

$$
\psi_{2}(z, 0)=z e^{z}+e^{z} \quad \psi_{1}(z, 0)=0
$$

Hence by Milne-Thomson method, we have

$$
\begin{aligned}
f(z) & =\int\left[\Psi_{1}(z, 0)+i \psi_{2}(z, 0)\right] d z+C \\
& =\int\left[0+i\left(z e^{z}+e^{z}\right)\right] d z+C=i\left(z e^{z}-e^{z}+e^{z}\right)+C=i z e^{z}+C .
\end{aligned}
$$

This is the required analytic function.
Ans.

Q39:

Evaluate $\oint_{C} \frac{d z}{z^{2}+9}$, where C is
(i) $|z+3 i|=2$
(ii) $|z|=5$

Solution. Here $f(z)=\frac{1}{z^{2}+9}$
The poles of $f(z)$ can be determined by equating the denominator equal to zero.
(i) $\therefore \quad z^{2}+9=0 \quad \Rightarrow \quad z= \pm 3 i$

Pole at $\mathrm{z}=-3 i$ lies in the given circle C.

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \frac{1}{z^{2}+9} d z=\int_{C} \frac{1}{(z+3 i)(z-3 i)} d z \\
& =\int_{C} \frac{1}{z-3 i} d z \\
& =2 \pi i\left[\frac{1}{z+3 i}\right] \\
& =2 \pi i\left[\frac{1}{z-3 i-3 i}\right]=\frac{-2 \pi i}{6 i}=-\frac{\pi}{3} \quad \text { Ans. }
\end{aligned}
$$

Ans.

Q40:
Prove that $\int_{C} \frac{d z}{z-a}=2 \pi i$, where C is the circle $|z-a|=r$
Solution. We have,

$$
\int_{C} \frac{d z}{z-a}, \text { where } C \text { is the circle with centre }(a, 0) \text { and radius } r \text {. }
$$

By Cauchy Integral Formula

$$
\begin{array}{ll}
& {\left[\int_{C} \frac{f(z)}{z-a} d z=2 \pi i f(a)\right]} \\
\Rightarrow \quad & \int_{C} \frac{d z}{z-a}=2 \pi i \text { (1) } \\
& \int_{C} \frac{d z}{z-a}=2 \pi i
\end{array}
$$

$$
\int_{C} \frac{2 z+1}{z^{2}+z} d z \text { where } C \text { is }|z|=\frac{1}{2} \text {. }
$$

Solution. Poles are given by

$$
\Rightarrow \quad \begin{aligned}
z^{2}+z & =0 \\
z(z+1) & =0 \quad \Rightarrow \quad z=0,-1
\end{aligned}
$$

$|z|=\frac{1}{2}$ is a circle with centre at origin and radius $\frac{1}{2}$.
Therefore it encloses only one pole $z=0$.

$$
\therefore \int_{C} \frac{2 z+1}{z(z+1)} d z=\int_{C} \frac{\frac{2 z+1}{z+1}}{z} d z=2 \pi i\left[\frac{2 z+1}{z+1}\right]_{z=0}=2 \pi i
$$

Q42:

Evaluate: $\int_{C} \frac{e^{z}}{(z-1)(z-4)} d z$ where C is the circle $|z|=2$ by using Cauchy's

Integral Formula.

Sol: we have,

$\int_{C} \frac{e^{z}}{(z-1)(z-4)} d z \quad$ where C is the circle with centre at origin and radius 2.
Poles are given by putting the denominator equal to zero.

$$
\begin{array}{ll}
& (z-1)(z-4)=0 \\
\Rightarrow \quad & \mathbf{z}=1,4
\end{array}
$$

Here there are two simple poles at $\mathrm{z}=1$ and $\mathrm{z}=4$.
There is only one pole at $\mathrm{z}=1$ inside the contour. Therefore

$$
\begin{aligned}
\int_{C} \frac{e^{z}}{(z-1)(z-4)} d z= & \frac{\frac{e^{z}}{(z-4)}}{(z-1)} d z=2 \pi i\left[\frac{e^{z}}{z-4}\right]_{z=1} \\
& =2 \pi i\left(\frac{e}{1-4}\right)=-\frac{2 \pi i e}{3}
\end{aligned}
$$

Which is the required value of the given integral.

Q43:

Evaluate $\int_{C} \frac{e^{3 i z}}{(z+\pi)^{3}} d z$
where C is the circle $|z-\pi|=3.2$
Solution. Here, $I=\int_{C} \frac{e^{3 i z}}{(z+\pi)^{3}} d z$
Where C is a circle $\{|z-\pi|=3.2\}$ with centre $(\pi, 0)$ and radius 3.2.
Poles are determined by putting the denominator equal to zero.

$$
(z+\pi)^{3}=0 \quad \Rightarrow \quad z=-\pi,-\pi,-\pi
$$

There is a pole at $z-\pi$ of order 3 . But there is no pole within C.
By Cauchy Integral Formula $\int_{C} \frac{e^{3 i z}}{(z+\pi)^{3}} d z=0$

Q44: Evaluate using Cauchy's integral formula

$$
\int_{C} \frac{\log z}{(z-1)^{3}} d z \text { where } C \text { is }|z-1|=\frac{1}{2} .
$$

Sol: Using Cauchy's Integral formula,
$\int_{C} \frac{\log z}{(z-1)^{3}} d z$
$C:|z-1|=\frac{1}{2}$

Poles are determined by putting denominater equal to zero.

$$
(z-1)^{3}=0 \quad \Rightarrow \quad z=1,1,1
$$

There is one pole of order three at $z=1$ which is inside the circle C.

$$
\begin{aligned}
\int \frac{f(z)}{(z-a)^{3}} d z & =2 \pi i f^{2}(a) \\
& =2 \pi i\left[\frac{d^{2}}{d z^{2}} \log z\right]_{z=1}=2 \pi i\left[\frac{d}{d z}\left(\frac{1}{z}\right)\right]_{z=1} \\
& =2 \pi i\left(-\frac{1}{z^{2}}\right)_{z=1}=-2 \pi i
\end{aligned}
$$

Q45:

Find the residue at $z=0$ of $z \cos \frac{1}{z}$.
Solution. Expanding the function in powers of $\frac{1}{z}$, we have

$$
z \cos \frac{1}{z}=z\left[1-\frac{1}{2!z^{2}}+\frac{1}{4!z^{4}}-\ldots . .\right]=z-\frac{1}{2 z}+\frac{1}{24 z^{3}}-\ldots \ldots
$$

This is the Laurent's expansion about $z=0$.
The coefficient of $\frac{1}{z}$ in it is $-\frac{1}{2}$. So the residue of $z \cos \frac{1}{z}$ at $z=0$ is $-\frac{1}{2}$.

Q46:

Find the residue of $f(z)=\frac{z^{3}}{z^{2}-1}$ at $z=\infty$.
Solution. We have, $\quad f(z)=\frac{z^{3}}{z^{2}-1}$

$$
f(z)=\frac{z^{3}}{z^{2}\left(1-\frac{1}{z^{2}}\right)}=z\left(1-\frac{1}{z^{2}}\right)^{-1}=z\left(1+\frac{1}{z^{2}}+\frac{1}{z^{4}}+\ldots . \cdot\right)=z+\frac{1}{z}+\frac{1}{z^{3}}+\ldots .
$$

Residue at infinity $=-\left(\right.$ coeff. of $\left.\frac{1}{z}\right)=-1$.

Q47: Determine the pole and residue at the pole of the function

$$
f(z)=\frac{z}{z-1}
$$

Solution. The poles of $f(z)$ are given by putting the denominator equal to zero.

$$
\therefore \quad z-1=0 \Rightarrow z=1
$$

The function $f(z)$ has a simple pole at $z=1$.
Residue is calculated by the formula

$$
\text { Residue }=\lim _{z \rightarrow a}(z-a) f(z)
$$

Residue of $f(z)($ at $z=1)=\lim _{z \rightarrow 1}(z-1)\left(\frac{z}{z-1}\right)=\lim _{z \rightarrow 1}(z)=1$
Hence, $f(z)$ has a simple pole at $z=1$ and residue at the pole is 1 .

Q48: Find the residue of a function

$$
f(z)=\frac{z^{2}}{(z+I)^{2}(z-2)} \text { at its double pole. }
$$

Solution. We have, $\quad f(z)=\frac{z^{2}}{(z+1)^{2}(z-2)}$
Poles are determined by putting denominator equal to zero.

$$
\begin{aligned}
\text { i.e.; } & & (z+1)^{2}(z-2) & =0 \\
\Rightarrow & & z & =-1,-1 \text { and } z=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { The function has a double pole at } z=-1 \\
& \text { Residue at }(z=-1)=\lim _{z \rightarrow-1} \frac{1}{(2-1)!}\left[\frac{d}{d z}\left\{(z+1)^{2} \frac{z^{2}}{(z+1)^{2}(z-2)}\right\}\right] \\
& ==\left[\frac{d}{d z}\left(\frac{z^{2}}{z-2}\right)\right]_{z=-1}=\left(\frac{(z-2) 2 z-z^{2} \cdot 1}{(z-2)^{2}}\right)_{z=-1}=\left[\frac{z^{2}-4 z}{(z-2)^{2}}\right]_{z=-1}=\frac{(-1)^{2}-4(-1)}{(-1-2)^{2}} \\
& \text { Residue at }(z=-1)=\frac{1+4}{9}=\frac{5}{9}
\end{aligned}
$$

Q49:

Find the residue of $\frac{z^{3}}{(z-1)^{4}(z-2)(z-3)}$ at a pole of order 4.
Solution. The poles of $f(z)$ are determined by putting the denominator equal to zero.

$$
\begin{array}{ll}
\therefore \quad(z-1)^{4}(z-2)(z-3)=0 \\
& \text { Here } \quad z=1 \text { is a pole of order } 4 .
\end{array}
$$

$$
\begin{equation*}
f(z)=\frac{z^{3}}{(z-1)^{4}(z-2)(z-3)} \tag{1}
\end{equation*}
$$

Putting $z-1=t$ or $z=1+t$ in (1), we get

$$
\begin{aligned}
& f(1+t)=\frac{(1+t)^{3}}{t^{4}(t-1)(t-2)}=\frac{1}{t^{4}}\left(t^{3}+3 t^{2}+3 t+1\right)(1-t)^{-1} \frac{1}{2}\left(1-\frac{t}{2}\right)^{-1} \\
& =\frac{1}{2}\left(\frac{1}{t}+\frac{3}{t^{2}}+\frac{3}{t^{3}}+\frac{1}{t^{4}}\right)\left(1+t+t^{2}+t^{3}+\ldots\right) \times\left(1+\frac{t}{2}+\frac{t^{2}}{4}+\frac{t^{3}}{8} \ldots\right) \\
& =\frac{1}{2}\left(\frac{1}{t}+\frac{3}{t^{2}}+\frac{3}{t^{3}}+\frac{1}{t^{4}}\right)\left(1+\frac{3}{2} t+\frac{7}{4} t^{2}+\frac{15}{8} t^{3}+\ldots\right)=\frac{1}{2}\left(\frac{1}{t}+\frac{9}{2 t}+\frac{21}{4} \frac{1}{t}+\frac{15}{8} \frac{1}{t}\right)+\ldots \\
& =\frac{1}{2}\left(1+\frac{9}{2}+\frac{21}{4}+\frac{15}{8}\right) \frac{1}{t} \quad\left[\operatorname{Res} f(a)=\text { coeffi. of } \frac{1}{t}\right]
\end{aligned}
$$

Coefficient of $\frac{1}{t}=\frac{1}{2}\left(1+\frac{9}{2}+\frac{21}{4}+\frac{15}{8}\right)=\frac{101}{16}$,
Hence, the residue of the given function at a pole of order 4 is $\frac{101}{16}$.

Q50: Determine the poles of the function and residue at the poles.

$$
f(z)=\frac{z}{\sin z}
$$

Solution.

$$
f(z)=\frac{z}{\sin z}
$$

Poles are determined by putting $\sin z=0=\sin n \pi \quad \Rightarrow z=n \pi$

$$
\begin{aligned}
\text { Residue } & =\left(\frac{z}{\cos z}\right)_{z=n \pi} \\
& =\frac{n \pi}{\cos n \pi}=\frac{n \pi}{(-1)^{n}}
\end{aligned}
$$

Hence, the residue of the given function at pole $z=n \pi$ is $\frac{n \pi}{(-1)^{n}}$.

Q51:

Find the residue of $f(z)=\frac{z e^{z}}{(z-a)^{3}}$ at its pole.

Solution. The pole of $f(z)$ is given by $(z-a)^{3}=0$ i.e., $z=a$
Here $\quad z=a$ is a pole of order 3 .
Putting $z-a=t$ where t is small.

$$
\begin{gathered}
f(z)=\frac{z e^{z}}{(z-a)^{3}} \Rightarrow f(z)=\frac{(a+t) e^{a+t}}{t^{3}}=\left(\frac{a}{t^{3}}+\frac{1}{t^{2}}\right) e^{a+t}=e^{a}\left(\frac{a}{t^{3}}+\frac{1}{t^{2}}\right) e^{t} \quad(z=a+t) \\
=e^{a}\left(\frac{a}{t^{3}}+\frac{1}{t^{2}}\right)\left(1+\frac{t}{1!}+\frac{t^{2}}{2!}+\ldots\right)=e^{a}\left[\frac{a}{t^{3}}+\frac{a}{t^{2}}+\frac{a}{2 t}+\frac{1}{t^{2}}+\frac{1}{t}+\frac{1}{2}+\ldots\right] \\
=e^{a}\left[\frac{1}{2}+\left(\frac{a}{2}+1\right) \frac{1}{t}+(a+1) \frac{1}{t^{2}}+(a) \frac{1}{t^{3}}+\ldots\right]
\end{gathered}
$$

Coefficient of $\frac{1}{t}=e^{a}\left(\frac{a}{2}+1\right)$
Hence the residue at $z=a$ is $e^{a}\left(\frac{a}{2}+1\right)$.

Q52: Using Residue theorem, evaluate

$$
\frac{1}{2 \pi i} \int_{C} \frac{e^{z t} d z}{\left(z^{2}+2 z+2\right)}
$$

where C is the cirlce $|\mathrm{z}|=3$.
Solution. Here, we have

$$
\frac{1}{2 \pi i} \int_{C} \frac{e^{z t} d z}{z^{2}\left(z^{2}+2 z+2\right)}
$$

Poles are given by

$$
\begin{aligned}
& z=0 \text { (double pole) } \\
& z=-1 \pm \text { (simple poles) }
\end{aligned}
$$

All the four poles are inside the given circle.
Residue at $\mathrm{z}=0$ is $\lim _{z \rightarrow 0} \frac{d}{d z} z^{2} \frac{e^{z t}}{z^{2}\left(z^{2}+2 z+2\right)}$

$$
\begin{aligned}
& =\lim _{z \rightarrow 0} \frac{d}{d z} \frac{e^{z t}}{z^{2}+2 z+2} \\
& =\lim _{z \rightarrow 0} \frac{\left(z^{2}+2 z+2\right) t e^{z t}-(2 z+2) e^{z t}}{\left(z^{2}+2 z+2\right)^{2}} \\
& =\frac{2 t e^{0}-2 e^{0}}{4}=\frac{(t-1)}{2}
\end{aligned}
$$

Residue at $z=-1+i$

$$
\begin{aligned}
& =\lim _{z \rightarrow-1+i} \frac{(z+1-i) e^{z t}}{z^{2}(z+1-i)(z+1+i)}=\lim _{z \rightarrow-1+i} \frac{e^{z t}}{z^{2}(z+1+i)} \\
& =\frac{e^{(-1+i) t}}{(-1+i)^{2}(-1+i+1+i)}=\frac{e^{(-1+i) t}}{(1-2 i-1)(2 i)}=\frac{e^{(-1+i) t}}{4} \\
& \quad \int \frac{e^{2 z t}}{z^{2}\left(z^{2}+2 z+2\right)} d z=2 \pi i \quad \text { (Sum of the Residues) } \\
& \Rightarrow \frac{1}{2 \pi i} \int \frac{e^{2 z t}}{z^{2}\left(z^{2}+2 z+2\right)} d z=\frac{t-1}{2}+\frac{e^{(-1+i) t}}{4}+\frac{e^{(-1-i) t}}{4} \\
& =\frac{t-1}{2}+\frac{e^{-t}}{4}\left(e^{i t}+e^{-i t}\right)=\frac{t-1}{2}+\frac{e^{-t}}{4}(2 \cos t) \\
& =\frac{t-1}{2}+\frac{e^{-t}}{2} \cos t
\end{aligned}
$$

Q53: Evaluate the integral:

$$
\int_{0}^{2 \pi} \frac{d \theta}{5-3 \cos \theta}
$$

Solution. $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \cos \theta}=\int_{0}^{2 \pi} \frac{d \theta}{5-3\left(\frac{e^{i \theta}+e^{-i \theta}}{2}\right)}$

$$
=\int_{0}^{2 \pi} \frac{2 d \theta}{10-3 e^{i \theta}-3 e^{-i \theta}}
$$

$$
=\int_{C} \frac{1}{10-3 z-\frac{3}{z}} \frac{d z}{i z}=\frac{1}{i} \int_{C} \frac{d z}{10 z-3 z^{2}-3}
$$

[C is the unit circle $|z|=1$]

$$
\begin{aligned}
& =-\frac{1}{i} \int_{C} \frac{d z}{3 z^{2}-10 z+3} \\
& =-\frac{1}{i} \int_{C} \frac{d z}{(3 z-1)(z-3)}=i \int_{C} \frac{d z}{(3 z-1)(z-3)}
\end{aligned}
$$

Let $\quad I=\int_{C} \frac{d z}{(3 z-1)(z-3)}$
Poles of the integrand are given by

$$
(3 z-1)(z-3)=0 \quad \Rightarrow \quad z=\frac{1}{3}, 3
$$

There is only one pole at $z=\frac{1}{3}$ inside the unit circle C.
Residue at $\left(z=\frac{1}{3}\right)=\lim _{z \rightarrow \frac{1}{3}}\left(z-\frac{1}{3}\right) f(z)=\lim _{z \rightarrow \frac{1}{3}} \frac{\left(z-\frac{1}{3}\right)}{(3 z-1)(z-3)}=\lim _{z \rightarrow \frac{1}{3}} \frac{1}{3(z-3)}$

$$
=\frac{1}{3\left(\frac{1}{3}-3\right)}=-\frac{1}{8}
$$

Hence, by Cauchy's Residue Theorem

$$
\begin{aligned}
& I=2 \pi i(\text { Sum of the residues within Contour })=2 \pi i\left(-\frac{1}{8}\right)=-\frac{\pi i}{4} \\
& \int_{0}^{2 \pi} \frac{d \theta}{5-3 \cos \theta}=i\left(\frac{-\pi i}{4}\right)=\frac{\pi}{4}
\end{aligned}
$$

Q54: Use the complex variable technique to find the value of the integral :

$$
\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta} .
$$

Solution. Let $I=\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}=\int_{0}^{2 \pi} \frac{d \theta}{2+\frac{e^{i \theta}+e^{-i \theta}}{2}}=\int_{0}^{2 \pi} \frac{2 d \theta}{4+e^{i \theta}+e^{-i \theta}}$
Put $e^{i \theta}=z$ so that $e^{i \theta}(i d \theta)=d z \Rightarrow i z d \theta=d z \Rightarrow d \theta=\frac{d z}{i z}$

$$
\begin{aligned}
I & =\int_{C} \frac{2 \frac{d z}{i z}}{4+z+\frac{1}{z}} \quad \text { where } c \text { denotes the unit circle }|z|=1 . \\
& =\frac{1}{i} \int_{c} \frac{2 d z}{z^{2}+4 z+1}
\end{aligned}
$$

The poles are given by putting the denominator equal to zero.

$$
z^{2}+4 z+1=0 \text { or } z=\frac{-4 \pm \sqrt{16-4}}{2}=\frac{-4 \pm 2 \sqrt{3}}{2}=-2 \pm \sqrt{3}
$$

The pole within the unit circle C is a simple pole at $z=-2+\sqrt{3}$. Now we calculate the residue at this pole.

$$
\text { Residue at } \begin{aligned}
(z=-2+\sqrt{3}) & =\lim _{z \rightarrow(-2+\sqrt{3})} \frac{1}{i} \frac{(z+2-\sqrt{3}) 2}{i(z+2-\sqrt{3})(z+2+\sqrt{3})} \\
& =\lim _{z \rightarrow(-2+\sqrt{3})} \frac{2}{i(z+2+\sqrt{3})}=\frac{2}{i(-2+\sqrt{3}+2+\sqrt{3})}=\frac{1}{\sqrt{3} i}
\end{aligned}
$$

Hence by Cauchy's Residue Theorem, we have

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta} & =2 \pi i \text { (sum of the residues within the contour) } \\
& =2 \pi i \frac{1}{i \sqrt{3}}=\frac{2 \pi}{\sqrt{3}}
\end{aligned}
$$

Q55:

Evaluate $\int_{0}^{\infty} \frac{\cos m x}{\left(x^{2}+1\right)} d x$
Solution. $\int_{0}^{\infty} \frac{\cos m x}{x^{2}+1} d x$
Consider the integral $\int_{C} f(z) d z$, where
$f(z)=\frac{e^{i m c}}{z^{2}+1}$, taken round the closed contour c consisting of the upper half of a large circle $|z|=R$ and the real axis from $-R$ to R.

Poles of $f(z)$ are given by

$$
z^{2}+1=0 \text { i.e. } z^{2}=-1 \text { i.e. } z= \pm i
$$

The only pole which lies within the contour is at $z=i$.
The residue of $f(z)$ at $z=i$

$$
=\lim _{z \rightarrow i} \frac{(z-i) e^{i m z}}{\left(z^{2}+1\right)}=\lim _{z \rightarrow i} \frac{e^{i m z}}{z+i}=\frac{e^{-m}}{2 i}
$$

Hence by Cauchy's residue theorem, we have

$$
\begin{gathered}
\int_{C} f(z) d z=2 \pi i \times \text { sum of the residues } \\
\Rightarrow \quad \int_{C} \frac{e^{i m z}}{z^{2}+1} d z=2 \pi i \times \frac{e^{-m}}{2 i} \quad \Rightarrow \quad \int_{-R}^{R} \frac{e^{i m x}}{x^{2}+1} d x=\pi e^{-m}
\end{gathered}
$$

Equating real parts, we have

$$
\int_{-\infty}^{\infty} \frac{\cos m x}{x^{2}+1} d x=\pi e^{-m} \quad \Rightarrow \int_{0}^{\infty} \frac{\cos m x}{x^{2}+1} d x=\frac{\pi e^{-m}}{2}
$$

Q56: Using the complex variable techniques, evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x
$$

Solution. $\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x$
Consider $\quad \int_{C} f(z) d z, \quad$ where $f(z)=\frac{1}{z^{4}+1}$
taken around the closed contour consisting of real axis and upper half C_{R}, i.e. $|z|=R$.
Poles of $f(z)$ are given by

$$
\begin{aligned}
& \quad \begin{aligned}
z^{4}+1 & =0 \text { i.e. } z^{4}=-1=(\cos \pi+i \sin \pi) \\
z^{4} & =[\cos (2 n+1) \pi+i \sin (2 n+1) \pi] \\
z & =[\cos (2 n+1) \pi+i \sin (2 n+1) \pi]^{\frac{1}{4}}=\left[\cos (2 n+1) \frac{\pi}{4}+i \sin (2 n+1) \frac{\pi}{4}\right] \\
\text { If } \quad n=0, & z_{1}
\end{aligned}=\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=e^{i \frac{\pi}{4}} \\
& n=1, \quad z_{2}
\end{aligned}=\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)=\left(-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=e^{i \frac{3 \pi}{4}} .
$$

There are four poles, but only two poles at z_{1} and z_{2} lie within the contour.
Residue $\left(\right.$ at $\left.z=e^{\frac{i \pi}{4}}\right)=\left[\frac{1}{\frac{d}{d z}\left(z^{4}+1\right)}\right]_{z=e^{\frac{i \pi}{4}}}=\left[\frac{1}{4 z^{3}}\right]_{z=e^{\frac{i \pi}{4}}}=\frac{1}{4\left(e^{i \frac{\pi}{4}}\right)^{3}}=\frac{1}{4 e^{i \frac{3 \pi}{4}}}$

$$
=\frac{1}{4} e^{-i \frac{3 \pi}{4}}=\frac{1}{4}\left[\cos \frac{3 \pi}{4}-i \sin \frac{3 \pi}{4}\right]=\frac{1}{4}\left[-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right]
$$

Residue $\left(\right.$ at $\left.z=e^{\frac{3 i \pi}{4}}\right)=\left[\frac{1}{\frac{d}{d z}\left(z^{4}+1\right)}\right]_{z=e^{\frac{3 i \pi}{4}}}=\frac{1}{\left[4 z^{3}\right]_{z}=\frac{3 i \pi}{4}}=\frac{1}{4\left(e^{\left.i \frac{3 \pi}{4}\right)^{3}}\right.}=\frac{1}{4 e^{i \frac{9 \pi}{4}}}$
$=\frac{1}{4} e^{-i \frac{9 \pi}{4}}=\frac{1}{4}\left(\cos \frac{9 \pi}{4}-i \sin \frac{9 \pi}{4}\right)=\frac{1}{4}\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)$
$\int_{C} f(z) d z=2 \pi i$ (sum of residues at poles within c)
$\int_{-R}^{R} f(z) d z+\int_{C_{R}} f(z) d z=2 \pi i$ (sum of the residues)
$\int_{-R}^{R} \frac{1}{x^{4}+1} d x+\int_{C_{R}} \frac{1}{z^{4}+1} d z=2 \pi i$ (sum of the residues)
Now, $\left|\int_{C_{R}} \frac{1}{z^{4}+1} d z\right| \leq \int_{C_{R}} \frac{1}{\left|z^{4}+1\right|}|d z|$

$$
\begin{aligned}
& \leq \int_{C_{R}} \frac{1}{\left(\left|z z^{4}\right|-1\right)}|d z| \quad\left[\text { Since } z=R e^{i \theta},|d z|=\left|R e^{i \theta} i d \theta\right|=R d \theta\right] \\
& \leq \int_{0}^{\pi} \frac{1}{R^{4}-1} R d \theta \leq \frac{R}{R^{4}-1} \int_{0}^{\pi} d \theta \\
& \leq \frac{R \pi}{R^{4}-1}=\frac{\pi / R^{3}}{1-1 / R^{4}} \quad \text { which } \rightarrow 0 \\
& \quad \text { as } \mathrm{R} \rightarrow \infty .
\end{aligned}
$$

Hence, $\int_{-R}^{R} \frac{1}{x^{4}+1} d x=2 \pi i$ (Sum of the residues within contour)
As $\quad R \rightarrow \infty$

Hence, $\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x=2 \pi i \quad$ (Sum of the residues within contour)

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x & =2 \pi i\left[\frac{1}{4}\left(-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)+\frac{1}{4}\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)\right] \\
& =\frac{\pi}{2} i\left(-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)=\frac{\pi i}{2}\left(-i \frac{2}{\sqrt{2}}\right)=\frac{\pi}{\sqrt{2}}
\end{aligned}
$$

Q57: Use the residue theorem to show that

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)^{2}}=\frac{2 \pi a}{\left(a^{2}-b^{2}\right)^{3 / 2}}
$$

Solution. $\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)^{2}}=\int_{0}^{2 \pi} \frac{d \theta}{\left(a+b \cdot \frac{e^{i \theta}+e^{-i \theta}}{2}\right)^{2}}$
Put $\quad e^{i \theta}=z$, so that $e^{i \theta}(i d \theta)=d z \quad \Rightarrow \quad i z d \theta=d z \Rightarrow d \theta=\frac{d z}{i z}$

$$
\begin{aligned}
&=\int_{c} \frac{1}{\left\{a+\frac{b}{2}\left(z+\frac{1}{z}\right)\right\}^{2}} \frac{d z}{i z} \\
& \begin{aligned}
\int_{c} \frac{1}{\left(a+\frac{b z}{2}+\frac{b}{2 z}\right)^{2}} \frac{d z}{i z} & =\int_{c} \frac{-4 i z}{\left(a+\frac{b k}{2}+\frac{b}{2 z}\right)^{2}} \frac{d z}{(2 z)^{2}} \\
& =\int_{c} \frac{-4 i z d z}{\left(b z^{2}+2 a z+b\right)^{2}}=\frac{-4 i}{b^{2}} \int_{c} \frac{z d z}{\left(z^{2}+\frac{2 a z}{b}+1\right)^{2}}
\end{aligned}
\end{aligned}
$$

The poles are given by putting the denominator equal to zero.

$$
\begin{array}{ll}
\text { i.e., } & \left(z^{2}+\frac{2 a}{b} z+1\right)^{2}=0 \\
\Rightarrow & (z-\alpha)^{2}(z-\beta)^{2}=0
\end{array}
$$

where

$$
\begin{aligned}
& \alpha=\frac{-\frac{2 a}{b}+\sqrt{\frac{4 a^{2}}{b^{2}}-4}}{2}=\frac{-a+\sqrt{a^{2}-b^{2}}}{b} \\
& \beta=\frac{-\frac{2 a}{b}-\sqrt{\frac{4 a^{2}}{b^{2}}-4}}{2}=\frac{-a-\sqrt{a^{2}-b^{2}}}{b}
\end{aligned}
$$

There are two poles, at $z=\alpha$ and at $z=\beta$, each of order 2 .
Since $\quad|\alpha \beta|=1$ or $|\alpha||\beta|=1$ if $|\alpha|<1$ then $|\beta|>1$.
There is only one pole $[|\alpha|<1]$ of order 2 within the unit circle c.
Residue (at the double pole $z=\alpha$) $=\lim _{z \rightarrow \alpha} \frac{d}{d z}(z-\alpha)^{2} \frac{(-4 i z)}{b^{2}(z-\alpha)^{2}(z-\beta)^{2}}$

$$
\begin{aligned}
& =\lim _{z \rightarrow \alpha} \frac{d}{d z} \frac{-4 i z}{b^{2}(z-\beta)^{2}} \\
& =-\frac{4 i}{b^{2}} \lim _{z \rightarrow \alpha} \frac{(z-\beta)^{2} \cdot 1-2(z-\beta) z}{(z-\beta)^{4}}=\frac{-4 i}{b^{2}} \lim _{z \rightarrow \alpha} \frac{z-\beta-2 z}{(z-\beta)^{3}}=\frac{-4 i}{b^{2}} \lim _{z \rightarrow \alpha} \frac{-(z+\beta)}{(z-\beta)^{3}}
\end{aligned}
$$

$$
=\frac{4 i}{b^{2}} \frac{(\alpha+\beta)}{(\alpha-\beta)^{3}}=\frac{4 i}{b^{2}} \frac{\alpha+\beta}{\left[(\alpha+\beta)^{2}-4 \alpha \beta\right]^{\frac{3}{2}}}=\frac{4 i}{b^{2}} \frac{\frac{-2 a}{b}}{\left[\left(-\frac{2 a}{b}\right)^{2}-4(1)^{\frac{3}{2}}\right.}
$$

$$
=\frac{-8 a i}{\left(4 a^{2}-4 b^{2}\right)^{\frac{3}{2}}}=-\frac{a i}{\left(a^{2}-b^{2}\right)^{\frac{3}{2}}}
$$

Hence, $\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)^{2}}=2 \pi i \times \frac{-a i}{\left(a^{2}-b^{2}\right)^{3 / 2}}=\frac{2 \pi a}{\left(a^{2}-b^{2}\right)^{3 / 2}}$

Q58: Using complex variable techniques evaluate the real integral

$$
\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{5-4 \cos \theta} d \theta
$$

Solution. If we write $z=e^{i \theta}$

$$
\cos \theta=\frac{1}{2}\left(z+\frac{1}{z}\right), \sin \theta=\frac{1}{2 i}\left(z-\frac{1}{z}\right), \quad d \theta=\frac{d z}{i z}
$$

and so $\quad I=\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{5-4 \cos \theta} d \theta=\frac{1}{2} \int_{0}^{2 \pi} \frac{1-\cos 2 \theta}{5-4 \cos \theta} d \theta$

$$
\begin{aligned}
\mathrm{I} & =\text { Real part of } \frac{1}{2} \int_{0}^{2 \pi} \frac{1-\cos 2 \theta-i \sin 2 \theta}{5-4 \cos \theta} d \theta \quad\left[\begin{array}{l}
\text { where } c \text { is a circle of } \\
\text { radius with centre } z= \\
\\
\end{array}=\text { Real part of } \frac{1}{2} \int_{0}^{2 \pi} \frac{1-e^{2 i \theta}}{5-4 \cos \theta} d \theta\right. \\
& =\text { Real part of } \frac{1}{2} \int_{c} \frac{1-z^{2}}{5-2\left(z+\frac{1}{z}\right)}\left(\frac{d z}{i z}\right)=\text { Real part of } \frac{1}{2 i} \int_{c} \frac{1-z^{2}}{5 z-2 z^{2}-2} d z \\
& =\text { Real part of } \frac{1}{2 i} \int_{c} \frac{z^{2}-1}{2 z^{2}-5 z+2} d z
\end{aligned}
$$

Poles are determined by $2 z^{2}-5 z+2=0$ or $(2 z-1)(z-2)=0 \quad$ or $\quad z=\frac{1}{2}, 2$
So inside the contour c there is a simple pole at $z=\frac{1}{2}$
Residue at the simple pole $\left(z=\frac{1}{2}\right)=\lim _{z \rightarrow \frac{1}{2}}\left(z-\frac{1}{2}\right) \frac{z^{2}-1}{(2 z-1)(z-2)}$

$$
=\lim _{z \rightarrow \frac{1}{2}} \frac{z^{2}-1}{2(z-2)}=\frac{\frac{1}{4}-1}{2\left(\frac{1}{2}-2\right)}=\frac{1}{4}
$$

$I=$ Real part of $\frac{1}{2 i} \int_{c} \frac{\left(z^{2}-1\right)}{2 z^{2}-5 z+2} d z=\frac{1}{2 i} 2 \pi i$ (sum of the residues)

$$
\Rightarrow \quad \int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{5-4 \cos \theta} d \theta=\pi\left(\frac{1}{4}\right)=\frac{\pi}{4}
$$

